Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Process Impacts ; 25(9): 1564-1577, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37646127

RESUMEN

Cosmetic additives (ADDs) and packaging plasticizers (PLAs) probably present potential risks and dangers to the environment and human body as emerging pollutants. To investigate their potential risks and dangers, five ADDs including methyl paraben (MET), ethyl paraben (ETH), propyl paraben (PRO), butyl-hydroxy anisole (BHA), and salicylic acid (SAL), as well as three PLAs including bisphenol A (BPA), bisphenol S (BPS) and tris(2-butoxyethyl) phosphate (TBEP) were selected as research objects, and ten mixture rays (R1-R10) composed of the eight components were designed by the uniform design ray (UD-Ray) method. The toxicities of the eight cosmetic pollutants and their eight-component mixture system towards Vibrio qinghaiensis sp.-Q67 (Q67) were systematically determined by the time-dependent microplate toxicity analysis (t-MTA) method. The three-dimensional (3D) surface of deviation from the concentration addition model (dCA) was utilized to qualitatively and quantitatively analyse the toxicity interaction of the mixtures and the correlation between toxicity interaction and the components' concentration ratios. Finally, eight individual pollutants and representative rays with significant inhibitory and interactive effects were selected to analyse DNA and soluble proteolysis as well as the microstructure and morphology of Q67 after treatment with single chemicals and their mixtures. The results showed that the eight cosmetic pollutants had conspicuous concentration-dependent toxicity and acute toxicity, and none of them, except BPS, BPA and ETH, had time-dependent toxicity. All rays had time/concentration-dependent toxicity and acute toxicity. At the same time, the toxicity interaction of these mixture rays was predominantly antagonism and the strongest antagonism appeared at high concentrations at 12 h. Nevertheless, the components' concentration ratio (pi) was the decisive factor for the type of mixture interaction. The correlation analysis revealed a significant positive linear correlation between mixture toxicity and pETH and pBPA, which indicated that ETH and BPA were the key components of the toxic effects. However, there was a significant negative linear correlation between the antagonism intensity and pBPA and pTBEP, which demonstrated that BPA and TBEP were the key components of the antagonism intensity. Pollutants and their mixtures can also damage cellular structures, and mixtures can exacerbate the dissolution of DNA and soluble proteins.


Asunto(s)
Cosméticos , Contaminantes Ambientales , Vibrio , Humanos , Parabenos
2.
Ecotoxicol Environ Saf ; 221: 112455, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34174735

RESUMEN

The coexistence of various typical disinfectant pollutants has the potential to produce toxicity interaction towards organisms in the environment. A suitable model is necessary to evaluate the interaction quantitatively. Hence, the area-concentration ratio (ACR) method was modified (MACR) by combing confidence intervals to dynamically and quantitatively evaluate the toxicity interactions within disinfectant mixture pollutants. Disinfectant mixtures were designed by the direct equipartition design ray method using three guanidine disinfectants, chlorhexidine diacetate (CD), chlorhexidine (CHL), and polyhexamethylene biguanidine (POL) and one chlorine-containing disinfectant calcium hypochlorite (CAL). The toxicities of the four disinfectants and their mixtures towards Vibrio qinghaiensis sp.-Q67 (Q67) were determined by the time-dependent toxicity microplate analysis method. And the toxicity mechanism was analyzed by determining the effects of four disinfectants and their binary mixtures on the structure of cell, DNA and proteins (Pro) for Q67. The results show that the toxicities of CD and CHL to Q67vary little with time, but POL and CAL show the obvious time-dependent toxicity. The toxicities of CD, CHL and POL to Q67 are significantly stronger than that of CAL at the same exposure time. The toxicities of three binary mixture systems don't have significant difference in different exposure time. MACR can dynamically, quantitatively and accurately characterize toxicity interactions compared with ACR. According to MACR, the antagonism intensity dynamically changes with the prolongation of exposure time for binary mixture rays of three guanidine disinfectants and CAL, and linearly correlates with the components' concentration ratios. Four disinfectants all can destroy cell membrane and cause desaturation DNA of test organism, and CAL even can destroy the structure of DNA and protein. The probably reason for the antagonism within binary mixtures is the reaction between guanidine group and ClO-, which is called chemical antaogism.


Asunto(s)
Biguanidas/toxicidad , Compuestos de Calcio/toxicidad , Clorhexidina/análogos & derivados , Clorhexidina/toxicidad , Desinfectantes/toxicidad , Contaminantes Ambientales/toxicidad , Vibrio/efectos de los fármacos , Interacciones Farmacológicas
3.
Huan Jing Ke Xue ; 35(2): 740-5, 2014 Feb.
Artículo en Chino | MEDLINE | ID: mdl-24812972

RESUMEN

A manganese-oxidizing bacteria (QJX-1) was isolated from the soil of a manganese mine. It was identified as Pseudomonas sp. QJX-1 by 16S rDNA sequencing. Experimental results showed that the Pseudomonas sp. QJX-1 has a multi-copper oxidase gene CumA, which is an essential component for manganese oxidation by Pseudomonas sp. Under the condition of low initial inoculum level (D600, 0.020), 5.05 mg x L(-1 Mn2+ could be oxidized by QJX-1 within 48 h with a conversion rate of as high as 99.4%. In comparison with the eutrophic conditions, the oligotrophic condition dramatically increased the biological manganese oxidation rate. Biofilm formation by employing the quartz sand could further improve the oxidation rate of Mn2+. Based on these results, it is speculated that biological manganese oxidation in underground water treatment is comparatively high.


Asunto(s)
Manganeso/metabolismo , Pseudomonas/metabolismo , Biopelículas , Oxidación-Reducción , Oxidorreductasas/metabolismo , Pseudomonas/enzimología , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...