Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 295: 133943, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35150697

RESUMEN

In the present study, field experiments were conducted in Side village, Yangshuo, Guilin, Guangxi Province, China, using four C-BPA application levels (control (0 mg m-2), T1 (100 mg m-2), T2 (200 mg m-2) and T3 (400 mg m-2)) to clarify the mechanism by which a chitosan-based phosphorus adsorbent (C-BPA) applied as a passivator helps Bidens pilosa L. (B. pilosa L.) alleviate cadmium (Cd)-induced oxidative stress in Cd-contaminated soil. In the aqueous phase, C-BPA successfully adsorbed Cd2+ on the surface primarily via ion exchange, and C-BPA has potential Cd2+ adsorption capacity, enabling its use as a passivator in real Cd-contaminated environments. In Cd-contaminated soils, under C-BPA application at the T3 level, the pH value increased by 11.2%, and the acid-soluble form of Cd decreased by 26.5%. Additionally, the application of C-BPA improved the rhizosphere soil environment and impacted the soil microbial community diversity and structure. Among soil microbes, the soil fungal community was more sensitive than bacteria to C-BPA application. Dehydrogenase, acetic acid, soil pH and Eurotiomycetes or Dothideomycetes significantly impacted Cd accumulation in the leaves of B. pilosa L.; Cd accumulation in leaves was decreased by 68.1% under C-BPA application at the T3 level. Additionally, the variation of increased catalase (CAT) and peroxidase (POD) jointly promoted plant growth; the plant weight was increased by 112.7% under the C-BPA application at the T3 level. Notably, the production of CAT and POD by B. pilosa L. was more effective than the synthesis of glutathione (GSH) in helping B. pilosa L. eliminate excess reactive oxygen species (ROS). Therefore, our findings demonstrated that the application of C-BPA to Cd-contaminated soil can greatly improve the rhizosphere soil environment, help B. pilosa L. eliminate ROS and promote plant growth.


Asunto(s)
Bidens , Quitosano , Microbiota , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/análisis , Cadmio/toxicidad , China , Estrés Oxidativo , Fósforo/farmacología , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...