Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(7)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39065256

RESUMEN

The treatment of antibiotic wastewater, which is known for its micro-toxicity, inhibition, and poor biochemistry, poses significant challenges, including complex processes, high energy demands, and secondary pollution. Bio-Fenton, a novel Fenton technology, enables the in situ production of H2O2 at near-neutral pH, having low energy requirements and sustainable properties, and reduces the hazards of H2O2 transportation and storage. We preliminary self-designed a heterogeneous Bio-Fenton reactor. An aerobic SBBR system with pure algae, pure bacteria, and bacteria-algae symbiosis was first constructed to investigate the optimal process conditions through the effects of carbon source concentration, light duration, bamboo charcoal filling rate, and dissolved oxygen (DO) content on the H2O2 production and COD removal. Second, the reactor was constructed by adding iron-carrying catalysts to remove ROX and SDZ wastewater. The results demonstrated that the optimal operating parameters of aerobic SBBR were an influent carbon source concentration of 500 mg/L, a water temperature of 20 ± 2 °C, pH = 7.5, a dissolved oxygen content of 5 mg/L, a light-dark ratio of 12 h:12 h, a light intensity of 2500 Lux, an HRT of 10 h, and a bamboo charcoal filling rate of 33%. Given these conditions, the bacterial-algal system was comprehensively found to be the most suitable biosystem for this experiment. Ultimately, the dynamically coupled Bio-Fenton process succeeded in the preliminary removal of 41.32% and 42.22% of the ROX and SDZ from wastewater, respectively.

2.
Molecules ; 29(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930975

RESUMEN

As a toxic Volatile Organic Pollutant (TVOC), formaldehyde has a toxic effect on microorganisms, consequently inhibiting the biochemical process of formaldehyde wastewater treatment. Therefore, the selective degradation of formaldehyde is of great significance in achieving high-efficiency and low-cost formaldehyde wastewater treatment. This study constructed a heterogeneous Fe-ZSM-5/H2O2 Fenton system f or the selective degradation of target compounds. By immobilizing Fe3+ onto the surface of a ZSM-5 molecular sieve, Fe-ZSM-5 was prepared successfully. XRD, BET and FT-IR spectral studies showed that Fe-ZSM-5 was mainly composed of micropores. The influences of different variables on formaldehyde-selective heterogeneous Fenton degradation performance were studied. The 93.7% formaldehyde degradation and 98.2% selectivity of formaldehyde compared with glucose were demonstrated in the optimized Fenton system after 360 min. Notably, the resultant selective Fenton oxidation system had a wide range of pH suitability, from 3.0 to 10.0. Also, the Fe-ZSM-5 was used in five consecutive cycles without a significant drop in formaldehyde degradation efficiency. The use of reactive oxygen species scavengers indicated that the hydroxyl radical was the primary active species responsible for degrading formaldehyde. Furthermore, great degradation performance was acquired with high concentrations of formaldehyde for this system, and the degradation efficiency was more than 95.0%.

3.
Environ Sci Pollut Res Int ; 28(17): 21874-21886, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33411282

RESUMEN

The loss regularity of nitrogen (N), phosphorus (P), and chemical oxygen demand (CODMn) of runoff under different rainfall intensity and different management practices in Phyllostachys praecox cv. prevernalis forest land was studied. The total nitrogen (TN) and CODMn concentration in runoff were significantly correlated with the rainfall intensity under the three management modes named as control, fertilization, and cover. Moreover, N mainly lost in the form of nitrate (NO3--N). Generally, the relationship between total and dissolved phosphorus (TP and DP) loss in the three management modes was estimated in following orders: coverage > fertilization > control. The loss of P was mainly in the granular state, and the loss of DP only accounted negligible amount of the TP loss. The loss of CODMn was closely related to the magnitude of rainfall intensity. Results revealed that CODMn concentration in runoff under fertilization and cover management was significantly correlated with the rain fall intensity.


Asunto(s)
Movimientos del Agua , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Bosques , Nitrógeno/análisis , Nutrientes , Fósforo/análisis , Lluvia , Contaminantes Químicos del Agua/análisis
4.
Bioprocess Biosyst Eng ; 42(2): 199-212, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30353223

RESUMEN

A pilot-scale deep bed denitrification filter using quartz sand as the filter media was operated under filtration velocity of 5.23 m/h. Nitrate, nitrite, ammonia, and total nitrogen removal rates were relatively high at influent C/N ratios of 4:1 and 5:1. A model was developed using software to simulate the processes operating in the filter and improve the related parameters in the actual operations. The normalized sensitivity coefficient and the mean square sensitivity measure were used for the sensitivity analysis. Results showed that the stoichiometric parameters were the most sensitive, which were related to methylotrophs and biofilm. Measured data were consistent with the simulations. Moreover, the order of significance of factors affecting nitrate nitrogen removal was as follows: influent chemical oxygen demand, influent nitrate nitrogen, and hydraulic retention time. Last, the denitrification dynamic model was obtained at influent C/N ratio of 5:1.


Asunto(s)
Nitratos/química , Nitrógeno/química , Eliminación de Residuos Líquidos/métodos , Biopelículas , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Calibración , Simulación por Computador , Desnitrificación , Filtración/métodos , Metanol/química , Nitritos/química , Programas Informáticos , Aguas Residuales , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA