Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Sci Total Environ ; 946: 174246, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38955266

RESUMEN

The ionizing radiation (IR) represents a formidable challenge as an environmental factor to mitochondria, leading to disrupt cellular energy metabolism and posing health risks. Although the deleterious impacts of IR on mitochondrial function are recognized, the specific molecular targets remain incompletely elucidated. In this study, HeLa cells subjected to γ-rays exhibited concomitant oxidative stress, mitochondrial structural alterations, and diminished ATP production capacity. The γ-rays induced a dose-dependent induction of mitochondrial fission, simultaneously manifested by an elevated S616/S637 phosphorylation ratio of the dynamin-related protein 1 (DRP1) and a reduction in the expression of the mitochondrial fusion protein mitofusin 2 (MFN2). Knockdown of DRP1 effectively mitigated γ-rays-induced mitochondrial network damage, implying that DRP1 phosphorylation may act as an effector of radiation-induced mitochondrial damage. The mitochondrial outer membrane protein voltage-dependent anion channel 1 (VDAC1) was identified as a crucial player in IR-induced mitochondrial damage. The VDAC1 inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), counteracts the excessive mitochondrial fission induced by γ-rays, consequently rebalancing the glycolytic and oxidative phosphorylation equilibrium. This metabolic shift was uncovered to enhance glycolytic capacity, thus fortifying cellular resilience and elevating the radiosensitivity of cancer cells. These findings elucidate the intricate regulatory mechanisms governing mitochondrial morphology under radiation response. It is anticipated that the development of targeted drugs directed against VDAC1 may hold promise in augmenting the sensitivity of tumor cells to radiotherapy and chemotherapy.

2.
MedComm (2020) ; 5(7): e613, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38898995

RESUMEN

The DNA-dependent protein kinase (DNA-PK), catalytic subunit, also known as DNA-PKcs, is complexed with the heterodimer Ku70/Ku80 to form DNA-PK holoenzyme, which is well recognized as initiator in the nonhomologous end joining (NHEJ) repair after double strand break (DSB). During NHEJ, DNA-PKcs is essential for both DNA end processing and end joining. Besides its classical function in DSB repair, DNA-PKcs also shows multifaceted functions in various biological activities such as class switch recombination (CSR) and variable (V) diversity (D) joining (J) recombination in B/T lymphocytes development, innate immunity through cGAS-STING pathway, transcription, alternative splicing, and so on, which are dependent on its function in NHEJ or not. Moreover, DNA-PKcs deficiency has been proven to be related with human diseases such as neurological pathogenesis, cancer, immunological disorder, and so on through different mechanisms. Therefore, it is imperative to summarize the latest findings about DNA-PKcs and diseases for better targeting DNA-PKcs, which have shown efficacy in cancer treatment in preclinical models. Here, we discuss the multifaceted roles of DNA-PKcs in human diseases, meanwhile, we discuss the progresses of DNA-PKcs inhibitors and their potential in clinical trials. The most updated review about DNA-PKcs will hopefully provide insights and ideas to understand DNA-PKcs associated diseases.

3.
Clin Transl Med ; 14(5): e1690, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760896

RESUMEN

INTRODUCTION: Radiation-induced pulmonary fibrosis (RIPF) is a chronic, progressive, irreversible lung interstitial disease that develops after radiotherapy. Although several previous studies have focused on the mechanism of epithelial-mesenchymal transition (EMT) in lung epithelial cells, the essential factors involved in this process remain poorly understood. The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) exhibits strong repair capacity when cells undergo radiation-induced damage; whether DNA-PKcs regulates EMT during RIPF remains unclear. OBJECTIVES: To investigate the role and molecular mechanism of DNA-PKcs in RIPF and provide an important theoretical basis for utilising DNA-PKcs-targeted drugs for preventing RIPF. METHODS: DNA-PKcs knockout (DPK-/-) mice were generated via the Cas9/sgRNA technique and subjected to whole chest ionizing radiation (IR) at a 20 Gy dose. Before whole chest IR, the mice were intragastrically administered the DNA-PKcs-targeted drug VND3207. Lung tissues were collected at 1 and 5 months after IR. RESULTS: The expression of DNA-PKcs is low in pulmonary fibrosis (PF) patients. DNA-PKcs deficiency significantly exacerbated RIPF by promoting EMT in lung epithelial cells. Mechanistically, DNA-PKcs deletion by shRNA or inhibitor NU7441 maintained the protein stability of Twist1. Furthermore, AKT1 mediated the interaction between DNA-PKcs and Twist1. High Twist1 expression and EMT-associated changes caused by DNA-PKcs deletion were blocked by insulin-like growth factor-1 (IGF-1), an AKT1 agonist. The radioprotective drug VND3207 prevented IR-induced EMT and alleviated RIPF in mice by stimulating the kinase activity of DNA-PKcs. CONCLUSION: Our study clarified the critical role and mechanism of DNA-PKcs in RIPF and showed that it could be a potential target for preventing RIPF.


Asunto(s)
Proteína Quinasa Activada por ADN , Transición Epitelial-Mesenquimal , Proteínas Nucleares , Proteínas Proto-Oncogénicas c-akt , Fibrosis Pulmonar , Proteína 1 Relacionada con Twist , Transición Epitelial-Mesenquimal/efectos de los fármacos , Animales , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteína 1 Relacionada con Twist/metabolismo , Proteína 1 Relacionada con Twist/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/etiología , Ubiquitinación , Humanos , Ratones Noqueados , Proteínas de Unión al ADN
4.
Br J Cancer ; 130(10): 1621-1634, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38575732

RESUMEN

BACKGROUND: DNA double-strand break (DSB) induction and repair are important events for determining cell survival and the outcome of cancer radiotherapy. The DNA-dependent protein kinase (DNA-PK) complex functions at the apex of DSBs repair, and its assembly and activity are strictly regulated by post-translation modifications (PTMs)-associated interactions. However, the PTMs of the catalytic subunit DNA-PKcs and how they affect DNA-PKcs's functions are not fully understood. METHODS: Mass spectrometry analyses were performed to identify the crotonylation sites of DNA-PKcs in response to γ-ray irradiation. Co-immunoprecipitation (Co-IP), western blotting, in vitro crotonylation assays, laser microirradiation assays, in vitro DNA binding assays, in vitro DNA-PK assembly assays and IF assays were employed to confirm the crotonylation, identify the crotonylase and decrotonylase, and elucidate how crotonylation regulates the activity and function of DNA-PKcs. Subcutaneous xenografts of human HeLa GCN5 WT or HeLa GCN5 siRNA cells in BALB/c nude mice were generated and utilized to assess tumor proliferation in vivo after radiotherapy. RESULTS: Here, we reveal that K525 is an important site of DNA-PKcs for crotonylation, and whose level is sharply increased by irradiation. The histone acetyltransferase GCN5 functions as the crotonylase for K525-Kcr, while HDAC3 serves as its dedicated decrotonylase. K525 crotonylation enhances DNA binding activity of DNA-PKcs, and facilitates assembly of the DNA-PK complex. Furthermore, GCN5-mediated K525 crotonylation is indispensable for DNA-PKcs autophosphorylation and the repair of double-strand breaks in the NHEJ pathway. GCN5 suppression significantly sensitizes xenograft tumors of mice to radiotherapy. CONCLUSIONS: Our study defines K525 crotonylation of DNA-PKcs is important for the DNA-PK complex assembly and DSBs repair activity via NHEJ pathway. Targeting GCN5-mediated K525 Kcr of DNA-PKcs may be a promising therapeutic strategy for improving the outcome of cancer radiotherapy.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Tolerancia a Radiación , Factores de Transcripción p300-CBP , Animales , Femenino , Humanos , Ratones , Proteína Quinasa Activada por ADN/metabolismo , Células HeLa , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/radioterapia , Neoplasias/metabolismo , Neoplasias/genética , Factores de Transcripción p300-CBP/metabolismo , Procesamiento Proteico-Postraduccional , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Ecotoxicol Environ Saf ; 275: 116255, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38552388

RESUMEN

Endogenous immune defenses provide an intrinsic barrier against external entity invasion. Microplastics in the environment, especially those at the nanoscale (nanoplastics or NPs), may pose latent health risks through direct exposure. While links between nanoplastics and inflammatory processes have been established, detailed insights into how they may perturb the innate immune mechanisms remain uncharted. Employing murine and macrophage (RAW264.7) cellular models subjected to polystyrene nanoplastics (PS-NPs), our investigative approach encompassed an array of techniques: Cell Counting Kit-8 assays, flow cytometric analysis, acridine orange/ethidium bromide (AO/EB) fluorescence staining, cell transfection, cell cycle scrutiny, genetic manipulation, messenger RNA expression profiling via quantitative real-time PCR, and protein expression evaluation through western blotting. The results showed that PS-NPs caused RAW264.7 cell apoptosis, leading to cell cycle arrest, and activated the cGAS-STING pathway. This resulted in NF-κB signaling activation and increased pro-inflammatory mediator expression. Importantly, PS-NPs-induced activation of NF-κB and its downstream inflammatory cascade were markedly diminished after the silencing of the STING gene. Our findings highlight the critical role of the cGAS-STING pathway in the immunotoxic effects induced by PS-NPs. We outline a new mechanism whereby nanoplastics may trigger dysregulated innate immune and inflammatory responses via the cGAS/STING pathway.


Asunto(s)
Microplásticos , FN-kappa B , Animales , Ratones , Microplásticos/toxicidad , Plásticos , Poliestirenos/toxicidad , Inmunidad Innata , Nucleotidiltransferasas
6.
Cell Death Dis ; 15(3): 209, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480704

RESUMEN

Metabolic reprogramming, a hallmark of cancer, is closely associated with tumor development and progression. Changes in glycolysis play a crucial role in conferring radiation resistance to tumor cells. How radiation changes the glycolysis status of cancer cells is still unclear. Here we revealed the role of TAB182 in regulating glycolysis and lactate production in cellular response to ionizing radiation. Irradiation can significantly stimulate the production of TAB182 protein, and inhibiting TAB182 increases cellular radiosensitivity. Proteomic analysis indicated that TAB182 influences several vital biological processes, including multiple metabolic pathways. Knockdown of TAB182 results in decreased lactate production and increased pyruvate and ATP levels in cancer cells. Moreover, knocking down TAB182 reverses radiation-induced metabolic changes, such as radioresistant-related lactate production. TAB182 is necessary for activating LDHA transcription by affecting transcription factors SP1 and c-MYC; its knockdown attenuates the upregulation of LDHA by radiation, subsequently suppressing lactate production. Targeted suppression of TAB182 significantly enhances the sensitivity of murine xenograft tumors to radiotherapy. These findings advance our understanding of glycolytic metabolism regulation in response to ionizing radiation, which may offer significant implications for developing new strategies to overcome tumor radioresistance.


Asunto(s)
L-Lactato Deshidrogenasa , Proteómica , Humanos , Animales , Ratones , L-Lactato Deshidrogenasa/metabolismo , Lactato Deshidrogenasa 5/metabolismo , Línea Celular Tumoral , Glucólisis , Lactatos , Tolerancia a Radiación/genética
7.
Cytokine Growth Factor Rev ; 75: 1-11, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38061920

RESUMEN

In contemporary oncology, radiation therapy and immunotherapy stand as critical treatments, each with distinct mechanisms and outcomes. Radiation therapy, a key player in cancer management, targets cancer cells by damaging their DNA with ionizing radiation. Its effectiveness is heightened when used alongside other treatments like surgery and chemotherapy. Employing varied radiation types like X-rays, gamma rays, and proton beams, this approach aims to minimize damage to healthy tissue. However, it is not without risks, including potential damage to surrounding normal cells and side effects ranging from skin inflammation to serious long-term complications. Conversely, immunotherapy marks a revolutionary step in cancer treatment, leveraging the body's immune system to target and destroy cancer cells. It manipulates the immune system's specificity and memory, offering a versatile approach either alone or in combination with other treatments. Immunotherapy is known for its targeted action, long-lasting responses, and fewer side effects compared to traditional therapies. The interaction between radiation therapy and immunotherapy is intricate, with potential for both synergistic and antagonistic effects. Their combined use can be more effective than either treatment alone, but careful consideration of timing and sequence is essential. This review explores the impact of various radiation therapy regimens on immunotherapy, focusing on changes in the immune microenvironment, immune protein expression, and epigenetic factors, emphasizing the need for personalized treatment strategies and ongoing research to enhance the efficacy of these combined therapies in cancer care.


Asunto(s)
Neoplasias , Humanos , Terapia Combinada , Neoplasias/radioterapia , Neoplasias/tratamiento farmacológico , Inmunoterapia , Microambiente Tumoral
8.
Exp Mol Med ; 55(12): 2596-2607, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38036735

RESUMEN

Exposure to nanomicroplastics (nano-MPs) can induce lung damage. The gut microbiota is a critical modulator of the gut-lung axis. However, the mechanisms underlying these interactions have not been elucidated. This study explored the role of lactate, a key metabolite of the microbiota, in the development of lung damage induced by nano-MPs (LDMP). After 28 days of exposure to nano-MPs (50-100 nm), mice mainly exhibited damage to the lungs and intestinal mucosa and dysbiosis of the gut microbiota. Lactate accumulation was observed in the lungs, intestines and serum and was strongly associated with the imbalance in lactic acid bacteria in the gut. Furthermore, no lactate accumulation was observed in germ-free mice, while the depletion of the gut microbiota using a cocktail of antibiotics produced similar results, suggesting that lactate accumulation in the lungs may have been due to changes in the gut microbiota components. Mechanistically, elevated lactate triggers activation of the HIF1a/PTBP1 pathway, exacerbating nano-MP-induced lung damage through modulation of the epithelial-mesenchymal transition (EMT). Conversely, mice with conditional knockout of Ptbp1 in the lungs (Ptbp1flfl) and PTBP1-knockout (PTBP1-KO) human bronchial epithelial (HBE) cells showed reversal of the effects of lactate through modulation of the HIF1a/PTBP1 signaling pathway. These findings indicate that lactate is a potential target for preventing and treating LDMP.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Animales , Ratones , Ácido Láctico/metabolismo , Mucosa Intestinal/metabolismo , Pulmón , Ratones Endogámicos C57BL , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteína de Unión al Tracto de Polipirimidina/farmacología
9.
MedComm (2020) ; 4(5): e388, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37808268

RESUMEN

Double-strand break (DSB), a significant DNA damage brought on by ionizing radiation, acts as an initiating signal in tumor radiotherapy, causing cancer cells death. The two primary pathways for DNA DSB repair in mammalian cells are nonhomologous end joining (NHEJ) and homologous recombination (HR), which cooperate and compete with one another to achieve effective repair. The DSB repair mechanism depends on numerous regulatory variables. DSB recognition and the recruitment of DNA repair components, for instance, depend on the MRE11-RAD50-NBS1 (MRN) complex and the Ku70/80 heterodimer/DNA-PKcs (DNA-PK) complex, whose control is crucial in determining the DSB repair pathway choice and efficiency of HR and NHEJ. In-depth elucidation on the DSB repair pathway's molecular mechanisms has greatly facilitated for creation of repair proteins or pathways-specific inhibitors to advance precise cancer therapy and boost the effectiveness of cancer radiotherapy. The architectures, roles, molecular processes, and inhibitors of significant target proteins in the DSB repair pathways are reviewed in this article. The strategy and application in cancer therapy are also discussed based on the advancement of inhibitors targeted DSB damage response and repair proteins.

10.
Environ Res ; 238(Pt 2): 117188, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37775007

RESUMEN

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are widespread persistent organic pollutants (POPs) associated with diseases including osteoporosis, altered immune function and cancer. However, few studies have investigated the association between PFAS mixture exposure and Depression in general populations. METHODS: Nationally representative data from the National Health and Nutrition Examination Survey (NHANES) (2005-2018) were used to analyze the association between PFAS and Depression in U.S. adults. Total 12,239 adults aged 20 years or older who had serum PFAS measured and answered Patient Health Questionnaire-9 (PHQ-9) were enrolled in this study. PFAS monomers detected in all 7 investigation cycles were included in the study. Generalized additive model (GAM) was used to fit smooth curves and threshold effect analysis was carried out to find the turning point of smooth curves. Generalized linear model (GLM) was used to describe the non-linear relationship between PFAS and depression and unconditioned logistic regression was used to risk analysis. RESULTS: The median of total serum PFAS concentration was 14.54 ng/mL. The curve fitting results indicated a U-shaped relationship between total serum PFAS and depression: PFAS< 39.66 ng/mL, A negative correlation between PHQ-9 score and serum PFAS concentration was observed (ß 0.047,95%CI -0.059, -0.036). The depression PHQ-9 score decreased with the increase of serum PFAS concentration. PFAS ≥ 39.66 ng/mL, A positive correlation was observed between PFAS and PHQ-9 score (ß 0.010,95% CI 0.003, 0.017). The depression PHQ-9 score increased with the increase of serum PFAS concentration. CONCLUSIONS: Our study provides new clues to the association of PFAS with depression, and large population-based cohort studies that can validate the causal association as well as toxicological mechanism studies are needed for validation.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Humanos , Adulto , Estudios Transversales , Encuestas Nutricionales , Depresión
11.
Mol Ther ; 31(9): 2633-2650, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37482682

RESUMEN

Chromatin remodeling and N6-methyladenosine (m6A) modification are two critical layers in controlling gene expression and DNA damage signaling in most eukaryotic bioprocesses. Here, we report that poly(ADP-ribose) polymerase 1 (PARP1) controls the chromatin accessibility of METTL3 to regulate its transcription and subsequent m6A methylation of poly(A)+ RNA in response to DNA damage induced by radiation. The transcription factors nuclear factor I-C (NFIC) and TATA binding protein (TBP) are dependent on PARP1 to access the METTL3 promoter to activate METTL3 transcription. Upon irradiation or PARP1 inhibitor treatment, PARP1 disassociated from METTL3 promoter chromatin, which resulted in attenuated accessibility of NFIC and TBP and, consequently, suppressed METTL3 expression and RNA m6A methylation. Lysophosphatidic Acid Receptor 5 (LPAR5) mRNA was identified as a target of METTL3, and m6A methylation was located at A1881. The level of m6A methylation of LPAR5 significantly decreased, along with METTL3 depression, in cells after irradiation or PARP1 inhibition. Mutation of the LPAR5 A1881 locus in its 3' UTR results in loss of m6A methylation and, consequently, decreased stability of LPAR5 mRNA. METTL3-targeted small-molecule inhibitors depress murine xenograft tumor growth and exhibit a synergistic effect with radiotherapy in vivo. These findings advance our comprehensive understanding of PARP-related biological roles, which may have implications for developing valuable therapeutic strategies for PARP1 inhibitors in oncology.


Asunto(s)
Cromatina , Neoplasias , Humanos , Ratones , Animales , Cromatina/genética , Metilación , ARN/metabolismo , Factores de Transcripción/genética , ARN Mensajero/genética , Neoplasias/genética , Neoplasias/radioterapia , Metiltransferasas/genética , Metiltransferasas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Receptores del Ácido Lisofosfatídico/metabolismo
12.
MedComm (2020) ; 4(4): e327, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37457660

RESUMEN

Nanoparticles (NPs) have become one of the most popular objects of scientific study during the past decades. However, despite wealth of study reports, still there is a gap, particularly in health toxicology studies, underlying mechanisms, and related evaluation models to deeply understanding the NPs risk effects. In this review, we first present a comprehensive landscape of the applications of NPs on health, especially addressing the role of NPs in medical diagnosis, therapy. Then, the toxicity of NPs on health systems is introduced. We describe in detail the effects of NPs on various systems, including respiratory, nervous, endocrine, immune, and reproductive systems, and the carcinogenicity of NPs. Furthermore, we unravels the underlying mechanisms of NPs including ROS accumulation, mitochondrial damage, inflammatory reaction, apoptosis, DNA damage, cell cycle, and epigenetic regulation. In addition, the classical study models such as cell lines and mice and the emerging models such as 3D organoids used for evaluating the toxicity or scientific study are both introduced. Overall, this review presents a critical summary and evaluation of the state of understanding of NPs, giving readers more better understanding of the NPs toxicology to remedy key gaps in knowledge and techniques.

14.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36499111

RESUMEN

The long-term survival rate of cancer patients has been increasing as a result of advances in treatments and precise medical management. The evidence has accumulated that the incidence and mortality of non-cancer diseases have increased along with the increase in survival time and long-term survival rate of cancer patients after radiotherapy. The risk of cardiovascular disease as a radiation late effect of tissue damage reactions is becoming a critical challenge and attracts great concern. Epidemiological research and clinical trials have clearly shown the close association between the development of cardiovascular disease in long-term cancer survivors and radiation exposure. Experimental biological data also strongly supports the above statement. Cardiovascular diseases can occur decades post-irradiation, and from initiation and development to illness, there is a complicated process, including direct and indirect damage of endothelial cells by radiation, acute vasculitis with neutrophil invasion, endothelial dysfunction, altered permeability, tissue reactions, capillary-like network loss, and activation of coagulator mechanisms, fibrosis, and atherosclerosis. We summarize the most recent literature on the tissue reactions and mechanisms that contribute to the development of radiation-induced cardiovascular diseases (RICVD) and provide biological knowledge for building preventative strategies.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Neoplasias , Traumatismos por Radiación , Humanos , Enfermedades Cardiovasculares/complicaciones , Células Endoteliales , Traumatismos por Radiación/complicaciones , Neoplasias/radioterapia , Neoplasias/complicaciones , Aterosclerosis/etiología
15.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499337

RESUMEN

Radiation-induced pulmonary fibrosis (RIPF) is a common consequence of radiation for thoracic tumors, and is accompanied by gradual and irreversible organ failure. This severely reduces the survival rate of cancer patients, due to the serious side effects and lack of clinically effective drugs and methods. Radiation-induced pulmonary fibrosis is a dynamic process involving many complicated and varied mechanisms, of which alveolar type II epithelial (AT2) cells are one of the primary target cells, and the epithelial-mesenchymal transition (EMT) of AT2 cells is very relevant in the clinical search for effective targets. Therefore, this review summarizes several important signaling pathways that can induce EMT in AT2 cells, and searches for molecular targets with potential effects on RIPF among them, in order to provide effective therapeutic tools for the clinical prevention and treatment of RIPF.


Asunto(s)
Fibrosis Pulmonar , Traumatismos por Radiación , Humanos , Fibrosis Pulmonar/metabolismo , Pulmón/patología , Células Epiteliales Alveolares/metabolismo , Transición Epitelial-Mesenquimal , Traumatismos por Radiación/metabolismo , Células Epiteliales/metabolismo
17.
Front Cell Dev Biol ; 10: 999600, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407111

RESUMEN

Radiation-induced pulmonary fibrosis (RIPF) is a chronic and progressive respiratory tract disease characterized by collagen deposition. The pathogenesis of RIPF is still unclear. Type 2 alveolar epithelial cells (AT2), the essential cells that maintain the structure and function of lung tissue, are crucial for developing pulmonary fibrosis. Recent studies indicate the critical role of AT2 cell senescence during the onset and progression of RIPF. In addition, clearance of senescent AT2 cells and treatment with senolytic drugs efficiently improve lung function and radiation-induced pulmonary fibrosis symptoms. These findings indicate that AT2 cell senescence has the potential to contribute significantly to the innovative treatment of fibrotic lung disorders. This review summarizes the current knowledge from basic and clinical research about the mechanism and functions of AT2 cell senescence in RIPF and points to the prospects for clinical treatment by targeting senescent AT2 cells.

18.
J Transl Med ; 20(1): 456, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36199069

RESUMEN

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) is a critical event contributing to more aggressive phenotypes in cancer cells. EMT is frequently activated in radiation-targeted cells during the course of radiotherapy, which often endows cancers with acquired radioresistance. However, the upstream molecules driving the signaling pathways of radiation-induced EMT have not been fully delineated. METHODS: In this study, RNA-seq-based transcriptome analysis was performed to identify the early responsive genes of HeLa cells to γ-ray irradiation. EMT-associated genes were knocked down by siRNA technology or overexpressed in HeLa cells and A549 cells, and the resulting changes in phenotypes of EMT and radiosensitivity were assessed using qPCR and Western blotting analyses, migration assays, colony-forming ability and apoptosis of flow cytometer assays. RESULTS: Through RNA-seq-based transcriptome analysis, we found that LPAR5 is downregulated in the early response of HeLa cells to γ-ray irradiation. Radiation-induced alterations in LPAR5 expression were further revealed to be a bidirectional dynamic process in HeLa and A549 cells, i.e., the early downregulating phase at 2 ~ 4 h and the late upregulating phase at 24 h post-irradiation. Overexpression of LPAR5 prompts EMT programing and migration of cancer cells. Moreover, increased expression of LPAR5 is significantly associated with IR-induced EMT and confers radioresistance to cancer cells. Knockdown of LPAR5 suppressed IR-induced EMT by attenuating the activation of ERK signaling and downstream Snail, MMP1, and MMP9 expression. CONCLUSIONS: LPAR5 is an important upstream regulator of IR-induced EMT that modulates the ERK/Snail pathway. This study provides further insights into understanding the mechanism of radiation-induced EMT and identifies promising targets for improving the effectiveness of cancer radiation therapy.


Asunto(s)
Metaloproteinasa 1 de la Matriz , Neoplasias , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Células HeLa , Humanos , Metaloproteinasa 9 de la Matriz , ARN Interferente Pequeño , Receptores del Ácido Lisofosfatídico
19.
Toxicol Res (Camb) ; 11(2): 348-360, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35510230

RESUMEN

Radioresistance is one of the key obstacles that may lead to the failure of cancer treatment. The underlying mechanisms of radioresistance remain largely unknown; however, increasing evidence has shown that long noncoding RNAs (lncRNAs) are involved in radiotherapy resistance of several cancers. In the present study, we demonstrated that radiation-elevated transcript (RET), a newly identified lnRNA, was highly expressed in cancer cells. Knockdown of RET significantly inhibited the proliferation and colony formation of cancer cells and markedly inhibited apoptosis. Furthermore, downregulation of RET in cancer cells significantly inhibited cell growth, decreased colony survival fractions, and promoted apoptosis in response to radiation treatment, indicating a role in radiation resistance. Moreover, RET knockdown significantly increased the expression of γ-H2AX, an indicator of DNA double strand damage, and reversed radiation-induced EMT, both of which contributed to its radiation resistance. In addition, a negative correlation was found between the expression of RET and PTEN. Rescue assays confirmed RET knockdown enhanced radiosensitivity of cancer cells by upregulating the expression of PTEN. Mechanistically, RET positively regulated Slug, a repressor of PTEN transcription, by acting as a molecular sponge of miR-3179. Our present study showed that RET conferred radioresistance by regulating miR-3179/Slug/PTEN axis, indicating that RET may be a potential target for the clinical application in cancer patients with radioresistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...