Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38654580

RESUMEN

Methylosome protein 50 (Mep50) is a protein that is rich in WD40 domains, which mediate and regulate a variety of physiological processes in organisms. Previous studies indicated the necessity of Mep50 in embryogenesis in mice Mus musculus and fish. This study aimed to further understand the roles of maternal Mep50 in early embryogenesis using medaka Oryzias latipes as a model. Without maternal Mep50, medaka zygotes developed to the pre-early gastrula stage but died later. The transcriptome of the embryos at the pre-early gastrula stage was analyzed by RNA sequencing. The results indicated that 1572 genes were significantly upregulated and 741 genes were significantly downregulated in the embryos without maternal Mep50. In the differentially expressed genes (DEGs), the DNA-binding proteins, such as histones and members of the small chromosome maintenance complex, were enriched. The major interfered regulatory networks in the embryos losing maternal Mep50 included DNA replication and cell cycle regulation, AP-1 transcription factors such as Jun and Fos, the Wnt pathway, RNA processing, and the extracellular matrix. Quantitative RT-PCR verified 16 DEGs, including prmt5, H2A, cpsf, jun, mcm4, myc, p21, ccne2, cdk6, and col1, among others. It was speculated that the absence of maternal Mep50 could potentially lead to errors in DNA replication and cell cycle arrest, ultimately resulting in cell apoptosis. This eventually resulted in the failure of gastrulation and embryonic death. The results indicate the importance of maternal Mep50 in early embryonic development, particularly in medaka fish.

2.
Nat Microbiol ; 9(5): 1256-1270, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649412

RESUMEN

Epstein-Barr virus (EBV) can infect both B cells and epithelial cells (ECs), causing diseases such as mononucleosis and cancer. It enters ECs via Ephrin receptor A2 (EphA2). The function of interferon-induced transmembrane protein-1 (IFITM1) in EBV infection of ECs remains elusive. Here we report that IFITM1 inhibits EphA2-mediated EBV entry into ECs. RNA-sequencing and clinical sample analysis show reduced IFITM1 in EBV-positive ECs and a negative correlation between IFITM1 level and EBV copy number. IFITM1 depletion increases EBV infection and vice versa. Exogenous soluble IFITM1 effectively prevents EBV infection in vitro and in vivo. Furthermore, three-dimensional structure prediction and site-directed mutagenesis demonstrate that IFITM1 interacts with EphA2 via its two specific residues, competitively blocking EphA2 binding to EBV glycoproteins. Finally, YTHDF3, an m6A reader, suppresses IFITM1 via degradation-related DEAD-box protein 5 (DDX5). Thus, this study underscores IFITM1's crucial role in blocking EphA2-mediated EBV entry into ECs, indicating its potential in preventing EBV infection.


Asunto(s)
Antígenos de Diferenciación , Efrina-A2 , Células Epiteliales , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Receptor EphA2 , Internalización del Virus , Humanos , Herpesvirus Humano 4/fisiología , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Células Epiteliales/virología , Células Epiteliales/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/metabolismo , Receptor EphA2/metabolismo , Efrina-A2/metabolismo , Efrina-A2/genética , Antígenos de Diferenciación/metabolismo , Antígenos de Diferenciación/genética , Animales , Células HEK293 , Unión Proteica , Ratones , Línea Celular
3.
Artículo en Inglés | MEDLINE | ID: mdl-38432104

RESUMEN

Methylosome protein 50 (Mep50) functions as a partner to protein arginine methyltransferase 5. MEP50 serves as a coactivator for both the androgen receptor and estrogen receptor in humans. Mep50 plays a crucial role in the development of germ cells in Drosophila. The precise role of Mep50 in oogenesis remains unclear in vertebrates. The objective of this study was to investigate the role of Mep50 in oogenesis in medaka fish. Disruption of Mep50 resulted in impaired oogenesis and the formation of multiple oocyte follicles in medaka. RNA-seq analysis revealed significant differential gene expression in the mutant ovary, with 4542 genes up-regulated and 1264 genes down-regulated. The regulated genes were found to be enriched in cellular matrices and ECM-receptor interaction, the Notch signaling pathway, the PI3K-Akt signaling pathway, the MAPK signaling pathway, the Hippo signaling pathway, and the Jak-Stat pathway, among others. In addition, the genes related to the hypothalamus-pituitary-gonad axis, steroid metabolism, and IGF system were impacted. Furthermore, the mutation of mep50 caused significant alterations in alternative splicing of pre-mRNA in ovarian cells. Quantitative RT-PCR results validated the findings from RNA-seq analysis in the specific genes, including akt2, map3k5, yap1, fshr, cyp17a, igf1, ythdc2, cdk6, and col1, among others. The findings of this study demonstrate that Mep50 plays a crucial role in oogenesis, participating in a diverse range of biological processes such as steroid metabolism, cell matrix regulation, and signal pathways. This may be achieved through the regulation of gene expression via mRNA splicing in medaka ovarian cells.


Asunto(s)
Proteínas de Peces , Oogénesis , Oryzias , Animales , Oogénesis/genética , Oryzias/genética , Femenino , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Transducción de Señal
4.
Gene ; 868: 147387, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36963734

RESUMEN

Mep50 as a partner promotes the activity and substrate affinity of Prmt5. Prmt5 and Mep50 function together in multiple bioprocesses of the cells. Both Prmt5 and Mep50 are necessary for maintenance of the stem cells and are indispensable in the embryogenesis in the mammals. However, the role of Mep50 is rarely studied in fish. This study was to investigate the role of Mep50 in embryonic development of medaka. Medaka mep50 was mutated by genomic editing with CRISPR-Cas9 technology. Two mutants with a deletion of 22 and 46 bp separately in mep50 caused premature stopping of translation. The homozygotes of these mutant fish were obtained by self-crossing of the heterozygotes. These homozygotic mutants could reproduce embryos but the offspring were not viable. The apoptotic cells were significantly more in the mutant embryos than that in the wild type indicated by TUNEL assay. Quantitative RT-PCR showed that the expression of oct4 and sox2 were significantly decreased, but p53 was increased in the mutant embryos. These results suggest that disruption of mep50 severely interferes with embryogenesis and mep50 is necessary for embryonic development by maintaining stem cells and repression of apoptosis in medaka.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Oryzias , Animales , Proteínas Adaptadoras Transductoras de Señales/genética , Oryzias/genética , Oryzias/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Desarrollo Embrionario/genética , Mamíferos/metabolismo
5.
J Transl Med ; 21(1): 40, 2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36681849

RESUMEN

BACKGROUND: Current diagnosis tools for prostate cancer (PCa) such as serum PSA detection and prostate biopsy cannot distinguish dormant tumors from invasive malignancies, either be used as prognosis marker for castration resistant prostate cancer (CRPC), the lethal stage of PCa patients. Exosomes have been widely investigated as promising biomarkers for various diseases. We aim to characterize the proteomic and metabolomic profile of exosomes and to evaluate their potential value for the diagnosis of PCa, especially CRPC. We also investigate the functions of some specific exosome biomarkers in the progression of CRPC. METHODS: Integrated proteomics and metabolomics analysis were performed for plasma-derived exosomes collected from tumor-free controls (TFC), PCa and CRPC patients. Expression of specific exosomal proteins were further validated by targeted 4D-parallel reaction monitoring (PRM) mass spectrometry among the three cohorts. Tissue distribution and functional role of exosomal protein LRG1 was studied in clinical PCa tissue samples and cell line models. RESULTS: Three potential exosomal protein markers were identified. The apolipoprotein E level in PCa samples was 1.7-fold higher than that in TFC (receiver operating characteristic value, 0.74). Similarly, the levels of exosome-derived leucine-rich alpha2-glycoprotein 1 (LRG1) and inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3) in the CRPC group were 1.7 and 2.04 times, respectively, higher than those in the PCa group (ROC values, 0.84 and 0.85, respectively), indicating that LRG1 and ITIH3 could serve as predictive markers for CRPC. For metabolomic evaluation of exosomes, a series of differentially expressed metabolites were identified, and a combined metabolite panel showed ROC value of 0.94 for distinguishing PCa from TFC and 0.97 for distinguishing CRPC from PCa. Immunohistochemistry of tissue microarray showed that LRG1 protein was significantly upregulated in advanced prostate cancer and functional assay revealed that ectopic expression of LRG1 can significantly enhance the malignant phenotype of prostate cancer cells. More importantly, PCa cell derived LRG1-overexpressed exosomes remarkably promoted angiogenesis. CONCLUSION: Integration of proteomics and metabolomics data generated proteomic and metabolic signatures of plasma exosomes that may facilitate discrimination of CRPC from PCa and TFC patients, suggesting the potential of exosomal proteins and metabolites as CRPC markers. The study also confirmed the important role of exosomal protein LRG1 in PCa malignant progression.


Asunto(s)
Exosomas , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Proteómica , Próstata/metabolismo , Exosomas/metabolismo
6.
Front Endocrinol (Lausanne) ; 13: 975623, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034466

RESUMEN

Background: Prostate cancer (PCa) is among the leading causes of cancer death worldwide. Ferroptosis refers to an iron-dependent form of regulated cell death and is involved in prostate tumorigenesis. A few ferroptosis-related gene signatures have been developed to predict the prognosis for PCa patients. However, previous signatures were typically established based on biochemical recurrence-free survival, which has proven not to be a good surrogate for overall survival (OS). This study aimed to construct a novel ferroptosis-related gene prognostic index (FRGPI) to predict disease-free survival (DFS) and response to immunotherapy for PCa patients after radical prostatectomy. Methods: Gene expression and clinicopathological data on PCa patients were obtained from the TCGA database. Ferroptosis-related hub genes associated with DFS of PCa patients were identified by an in-depth bioinformatics analysis using a novel and comprehensive algorithm based on functional enrichment, consensus clustering, weighted gene co-expression network analysis (WGCNA), and protein-protein interaction (PPI) network construction. The FRGPI was established on the basis of the genes selected using multivariate cox regression analysis and further validated in two additional PCa cohorts. Next, the clinicopathological, molecular, and immune profiles were characterized and compared between FRGPI-high and FRGPI-low subgroups. Finally, the predictive role of the FRGPI in response to immunotherapy was estimated using a metastatic urothelial cancer cohort treated with an anti-PD-L1 agent. Results: The FRGPI was constructed based on four genes (E2F1, CDC20, TYMS, and NUP85), and FRGPI-high patients had worse DFS than FRGPI-low patients. Multivariate cox regression analysis revealed that FRGPI could act as an independent prognostic factor for PCa patients after radical prostatectomy. A prognostic nomogram comprising the FRGPI and other clinicopathological parameters was established to predict the DFS for PCa patients quantitatively. In addition, comprehensive results demonstrated that high FRGPI scores showed a significantly positive correlation with worse clinicopathological features, higher mutation counts, increased frequency of copy number variations (CNVs), higher homologous recombination deficiency (HRD) and immune scores, higher mRNAsi, and more importantly, enhanced sensitivity to immunotherapy. Conclusions: FRGPI is not only a promising and robust prognostic biomarker, but also a potential indicator of immunotherapeutic outcomes for PCa patients after radical prostatectomy.


Asunto(s)
Ferroptosis , Neoplasias de la Próstata , Biomarcadores de Tumor , Variaciones en el Número de Copia de ADN , Humanos , Inmunoterapia , Masculino , Pronóstico
7.
J Exp Zool B Mol Dev Evol ; 338(5): 301-313, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35226401

RESUMEN

Activating transcription factor 5 (Atf5) is a member of the ATF/CREB family of transcription factors and involved in diverse cellular functions and diseases in mammals. However, the function of atf5 remains largely unknown in fish. Here, we report the expression pattern and function of duplicated atf5 genes in zebrafish. The results showed that the gene structures of zebrafish atf5a and atf5b were similar to their mammalian orthologs. Zebrafish Atf5a and Atf5b shared an amino acid sequence identity of 40.7%. Zebrafish atf5a and atf5b had maternal origin with dynamic expression during embryonic development. Zebrafish atf5a mRNA is mainly enriched in olfactory epithelium, midbrain, and hindbrain, while zebrafish atf5b mRNA is mainly detected in midbrain, hindbrain, and liver during embryogenesis. The results of acute hypoxia experiment showed that atf5a mRNA was significantly upregulated in the brain, liver, and muscle, while atf5b mRNA was just increased significantly in the brain. Functional analysis showed that knockdown of atf5a affects the development of the ciliated neurons in zebrafish embryos. The effect was enhanced when atf5a MO was co-injected with atf5b MO. The development of ciliated neurons in zebrafish embryos was not affected by injection of atf5b MO alone. atf5a knockdown also affects the development of early-born olfactory neurons. The effects caused by atf5a knockdown could be rescued by atf5b mRNA. These results suggest that the duplicated atf5 genes may have evolved divergently and play redundant biological roles in the development of olfactory sensory neurons in zebrafish.


Asunto(s)
Duplicación de Gen , Pez Cebra , Factores de Transcripción Activadores/genética , Factores de Transcripción Activadores/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Mamíferos/genética , ARN Mensajero/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
Fish Physiol Biochem ; 47(4): 1229-1242, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34218391

RESUMEN

Bcl6 and Prdm1 (Blimp1) are a pair of transcriptional factors that repressing each other in mammals. Prdm1 represses the expression of bcl6 by binding a cis-element of the bcl6 gene in mammals. The homologs of Bcl6 and Prdm1 have been identified in teleost fish. However, whether these two factors regulate each other in the same way in fish like that in mammals is not clear. In this study, the regulation of bcl6aa by Prdm1 was investigated in medaka. The mRNA of bcl6aa has three variants (bcl6aaX1-X3) at the 5'-end by alternative splicing detected by RT-PCR. The three variants can be detected in adult tissues and developing embryos of medaka. Prdm1a and prdm1b are expressed in the tissues and embryos where and when bcl6aa is expressed. The expression of prdm1a was high while the expression of bcl6aa was low, and vice versa, detected in the spleen after stimulation with LPS or polyI:C. In vitro reporter assay indicated that bcl6aa could be directly repressed by both Prdm1a and Prdm1b in a dosage-dependent manner. After mutation of the key base, G, of all predicted binding sites in the core promoter region of bcl6aa, the repression by Prdm1a and/or Prdm1b disappeared. The binding site of Prdm1 in the bcl6aa gene is GAAAA(T/G). These results indicate that both Prdm1a and Prdm1b directly repress the expression of bcl6aa by binding their binding sites where the 5'-G is critical in medaka fish.


Asunto(s)
Proteínas de Peces/genética , Oryzias/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Proteínas Proto-Oncogénicas c-bcl-6/genética , Empalme Alternativo , Animales , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica
9.
FEBS Open Bio ; 11(5): 1487-1496, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-31774623

RESUMEN

Bladder cancer is one of the most common malignant tumors of the urinary system, with high morbidity and mortality. At present, the survival rates and prognosis of patients with bladder cancer are still relatively low; thus, there remains a need to improve prognosis by identifying novel targets. Kinesins (kinesin superfamily proteins) are a series of microtubule-based motor proteins that mediate various types of cellular processes. Kinesin family member 3A (KIF3A) is critical for cytoplasm separation in mitosis, and it has been reported to be misexpressed in multiple types of cancer. However, its effects on the progression and development of bladder cancer remain unclear. Herein, we report that KIF3A is highly expressed in human bladder cancer. We identified a significant correlation between KIF3A and clinical features, including clinical stage (P = 0.047), pathological tumor status (P = 0.045), lymph node status (P = 0.041) and metastasis (P = 0.035). KIF3A expression was also correlated with poor prognosis of patients with bladder cancer. Our results further indicated that KIF3A ablation resulted in cell cycle arrest; blocked the proliferation, migration and invasion of bladder cancer cells in vitro; and restrained tumor growth in mice in a microtubule-dependent manner. In summary, our findings suggest that KIF3A is a potential therapeutic target for bladder cancer.


Asunto(s)
Cinesinas/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , China , Femenino , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Cinesinas/genética , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Invasividad Neoplásica/genética , Pronóstico , Neoplasias de la Vejiga Urinaria/genética , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Can Assoc Radiol J ; 72(4): 742-749, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32936688

RESUMEN

OBJECTIVE: To evaluate the performance of dual-source computed tomography (DSCT) in the component analysis of all types of calculi by doing a systematic review and meta-analysis. METHODS: We searched MEDLINE, Embase, Scopus, and CNKI up to February 28, 2020, for in vivo studies investigating the performance of DSCT in the component analysis of calculi. We pooled the sensitivity, specificity, and areas under the summary receiver operating characteristic (AUROC) curves using a random-effect model in the meta-analysis. Publication bias was evaluated using Deek's funnel plot asymmetry test. RESULTS: This analysis included a total of 37 studies in 1840 patients with 2151 calculi (462 uric acid [UA], 1383 calcium oxalate [CaOx], 55 cystine [Cys], 197 hydroxyapatite [HA], and 54 struvite [SV]). Using DSCT, the pooled accuracy for diagnosing UA (sensitivity, 0.95; specificity, 0.99), CaOx (0.98; 0.93), Cys (0.99; 0.99), HA (0.91; 0.99), and SV (0.42; 0.98) was calculated, respectively. The AUROC value was 0.99, 0.99, 1.00, 0.99, and 0.93, respectively. The P values for publication bias test were .49, .70, .07, .04, and .19, respectively. CONCLUSION: Dual-source computed tomography has high sensitivity and specificity for the component analysis of UA, CaOx, Cys, and HA calculi in vivo. This tool may have the potential to replace the current analysis tool in vitro in diagnosing calculi.


Asunto(s)
Cálculos/diagnóstico por imagen , Tomografía Computarizada por Rayos X/instrumentación , Tomografía Computarizada por Rayos X/métodos , Humanos
11.
Protein Pept Lett ; 27(10): 971-978, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32370700

RESUMEN

BACKGROUND: Prmt5 plays major role in regulation of gene expression, RNA processing, cell growth and differentiation, signal transduction, germ cell development, etc., in mammals. Prmt5 is also related to cancer. Knowing the proteins interacting with Prmt5 is important to understand Prmt5's function in cells. Although there have been reports on proteins binding with Prmt5 in mammals, the partner proteins of Prmt5 in fish are still unclear. OBJECTIVES: The objective was to obtain proteins that bind with Prmt5 in medaka, a model fish. METHODS: Yeast two hybridization was adopted to achieve the objective. Medaka Prmt5 was used as a bait to fish the prey, binding proteins in a cDNA library of medaka. Co-immunoprecipitation and in silicon analysis were performed to study the interaction of medaka Mep50 and Prmt5. RESULTS: Eight proteins were identified to bind with Prmt5 from 69 preliminary positive colonies. The binding proteins are methylosome protein 50 (Mep50), apolipoprotein A-I-like (Apo-AI), PR domain containing protein 1a with zinc fingers (Prdm1a), Prdm1b, T-cell immunoglobulin mucin family member 3 (Tim-3), phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase (Paics), NADH dehydrogenase subunit 4 (ND4) and sciellin (Scl). Co-immunoprecipitation confirmed the interaction of medaka Prmt5 and Mep50. Predicted structures of medaka Prtm5 and Mep50 are similar to that of human PRMT5 and MEP50. CONCLUSION: Medaka Mep50, Prdm1a, Prdm1b, Apo-AI, Tim-3, Paics, ND4, and Scl bind with Prmt5.


Asunto(s)
Proteínas de Peces , Biblioteca de Genes , Oryzias , Proteína-Arginina N-Metiltransferasas , Animales , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Oryzias/genética , Oryzias/metabolismo , Unión Proteica , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo
12.
J Exp Zool B Mol Dev Evol ; 334(4): 235-244, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32150339

RESUMEN

T-cell immunoglobulin (Ig) and mucin domain-containing 1 (Tim-1) and Tim-4 are two members of the Tim family. In mammals, Tim-1 and Tim-4 are proteins mainly expressed in immune cells and are associated with immune response. In the present study, medaka Oryzias latipes' Tim-1 (OlTim-1) and OlTim-4 were identified and characterized using bioinformatics analyses. With the use of reverse-transcription polymerase chain reaction, the expression profiles of OlTim-1 and OlTim-4 were examined in embryos and adult fish and in immune tissues following the intraperitoneal injection of stimulants. The results revealed that OlTim-1 possesses a cytoplasmic region, a transmembrane region, a mucin domain, and an Ig-like domain, while OlTim-4 is composed of two Ig-like domains and a mucin domain, but without the transmembrane region and cytoplasmic region. OlTim-1 and OlTim-4 expressions are detectable from the gastrula stage on, indicating that they are zygotic genes. Furthermore, OlTim-1 and OlTim-4 are expressed ubiquitously in the adult. Administration of immune stimulants, namely lipopolysaccharides and polyinosinic:polycytidylic acid, significantly increased the expression levels of OlTim-1 and OlTim-4 in the liver and intestine within 1 day and in the head, kidney, and spleen within 3 to 4 days postinjection. These results suggest that OlTim-1 and OlTim-4 are possibly involved in both innate and adaptive immunities.


Asunto(s)
Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Oryzias/metabolismo , Envejecimiento/fisiología , Animales , Embrión no Mamífero/metabolismo , Receptor Celular 1 del Virus de la Hepatitis A/genética , Modelos Moleculares , Oryzias/embriología , Phyllachorales , Conformación Proteica
13.
J Exp Zool B Mol Dev Evol ; 334(2): 77-87, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31990140

RESUMEN

Arginine methylation is an important posttranslational modification and catalyzed by a family of protein arginine methyltransferases (PRMTs). PRMT7 is the type III PRMT and produces solely monomethylarginine products. PRMT7 has been found to play important roles in multiple biological processes in mammals. However, the expression pattern and function of Prmt7 remain largely unknown in fish. In this study, we characterized the medaka prmt7 gene and determined its expression pattern and function during embryogenesis and germ cell development. The results showed that the chromosomal location and gene structure of medaka prmt7 were similar to its mammalian orthologs. Comparisons of deduced amino acid sequences indicated that medaka Prmt7 was a homolog of human PRMT7 with two methyltransferase domains. Reverse transcription-polymerase chain reaction (RT-PCR) and real time RT-PCR revealed that medaka prmt7 had maternal origin with continuous and dynamical expression during embryonic development. Whole-mount in situ hybridization analysis observed that the transcripts of prmt7 were ubiquitous at morula and gastrula stage, and were later riched in the brain and otic vesicles during embryogenesis. In the adult stage, prmt7 messenger RNA was detected in all examined tissues with the high levels in the ovary and testis. The expression of prmt7 in the gonads was restricted to oocytes of the ovary and spermatids/sperm of the testis. Functional analysis showed that knockdown of medaka prmt7 did not reduce the total number of primordial germ cells (PGCs) in vivo but significantly affected PGCs distribution during embryonic development. These results indicate that prmt7 may be involved in germ cell development in medaka.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Oryzias/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Oryzias/embriología , Oryzias/genética , Filogenia , Proteína-Arginina N-Metiltransferasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
Sci Rep ; 9(1): 18910, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31827208

RESUMEN

FUN14 domain-containing protein 1 (FUNDC1) is a mitochondrial outer membrane protein which is responsible for hypoxia-induced mitophagy in mammalian cells. Knockdown of fundc1 is known to cause severe defects in the body axis of a rare minnow. To understand the role of Fundc1 in embryogenesis, we used zebrafish in this study. We used bioimaging to locate zebrafish Fundc1 (DrFundc1) with MitoTracker, a marker of mitochondria, and/or CellLight Lysosomes-GFP, a label of lysosomes, in the transfected ovary cells of grass carp. The use of Western blotting detected DrFundc1 as a component of mitochondrial proteins with endogenous COX IV, LC3B, and FUNDC1 in transgenic human embryonic kidney 293 T cells. DrFundc1 induced LC3B activation. The ectopic expression of Drfundc1 caused cell death and apoptosis as well as impairing cell proliferation in the 293 T cell line, as detected by Trypan blue, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and incorporation of BrdU. DrFundc1 up-regulated expression of both autophagy- and apoptosis-related genes, including ATG5, ATG7, LC3B, BECLIN1, and BAX in transgenic 293 T cells. A knockdown of Drfundc1 using short hairpin RNA (shRNA) led to midline bifurcation with two notochords and two spinal cords in zebrafish embryos. Co-injection of Drfundc1 mRNA repaired defects resulting from shRNA. Knockdown of Drfundc1 resulted in up- or down-regulation of genes related to autophagy and apoptosis, as well as decreased expression of neural genes such as cyclinD1, pax2a, opl, and neuroD1. In summary, DrFundc1 is a mitochondrial protein which is involved in mitophagy and is critical for typical body axis development in zebrafish.


Asunto(s)
Desarrollo Embrionario/genética , Proteínas de la Membrana/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas de Pez Cebra/genética , Animales , Apoptosis/genética , Autofagia/genética , Línea Celular , Proliferación Celular/genética , Técnicas de Silenciamiento del Gen , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
15.
J Exp Zool B Mol Dev Evol ; 332(1-2): 17-25, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30680935

RESUMEN

B-cell lymphoma-6 (Bcl6) is a transcriptional repressor that plays important roles in various physiological activities such as innate and adaptive immune response, lymphocyte differentiation, and cell cycle regulation in mammals. Two homologs of Bcl6a, namely Bcl6aa and Bcl6ab, are identified in teleost fish including medaka Oryzias latipes. The expression profiles of bcl6aa and bcl6ab in medaka were studied using reverse-transcription polymerase chain reaction and in situ hybridization. The transcripts of bcl6aa and bcl6ab were detected from very early embryos such as the four-cell stage until hatching. Bcl6aa and bcl6ab were clearly detected in the embryonic body from 5 days postfertilization onward by in situ hybridization. Bcl6aa was specifically expressed in the retina, whereas bcl6ab was expressed in entire embryonic body. The results referred to that both bcl6aa and bcl6ab originate maternally in the zygotes and may play major roles in embryogenesis of medaka. The transcripts of bcl6aa and bcl6ab were detected in all examined adult tissues, including immune organs such as the gill, spleen, kidney, liver, and intestine. The expression of bcl6aa and bcl6ab in the liver, spleen, head-kidney, and intestine could be upregulated or downregulated by lipopolysaccharide and polyriboinosinic-polyribocytidylic acid. These results indicate that both bcl6aa and bcl6ab may be involved in immune response in medaka.


Asunto(s)
Proteínas de Peces/metabolismo , Lipopolisacáridos/farmacología , Oryzias/metabolismo , Poli I-C/farmacología , Proteínas Represoras/metabolismo , Animales , Proteínas de Peces/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Hibridación in Situ , Oryzias/embriología , Oryzias/genética , Filogenia , Proteínas Represoras/genética
16.
Artículo en Inglés | MEDLINE | ID: mdl-30292753

RESUMEN

Bcl6B, also known as BAZF, plays important roles in the immune response, repression of cancers, and maintenance of spermatogonial stem cells in mammals. In this study, the homologous gene bcl6b and its 5 alternative splicing variants, namely bcl6bX1 to bcl6bX5, were isolated from medaka fish, Oryzias latipes. Medaka bcl6b possesses conserved domains such as BTB domain, RD2 domain and four zinc fingers. Medaka bcl6bX1 to bcl6bX3 possess all three previously mentioned domains with minor differences in sequences. Medaka bcl6bX4 possesses only the BTB domain due to premature stopping, and bcl6bX5 possesses both the BTB domain and zinc fingers without the RD2 domain. Medaka bcl6b was expressed in the tissues including the brain, heart, gill, muscle, spleen, kidney, intestine, ovary and testes of adult fish. Medaka bcl6b was expressed in the embryos from very early stage, and could be detected clearly in the developing eyes by RT-PCR and in situ hybridization. Medaka bcl6b could respond to the stimuli of polyI:C and LPS in the kidney and spleen. Medaka bcl6bX1 to bcl6bX3 were the majority of the variants expressed in the adult tissues and the embryos, and were the major response to the stimulation of polyI:C and LPS in the spleen. These results suggested that bcl6b, including its isoforms, could function in various tissues and embryogenesis. Moreover, bcl6b might be a factor for immune response in medaka.


Asunto(s)
Empalme Alternativo , Desarrollo Embrionario , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , Oryzias/fisiología , Proteínas Represoras/metabolismo , Empalme Alternativo/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Embrión no Mamífero/inmunología , Embrión no Mamífero/fisiología , Ojo/embriología , Ojo/metabolismo , Proteínas de Peces/química , Proteínas de Peces/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Inductores de Interferón/farmacología , Riñón/efectos de los fármacos , Riñón/crecimiento & desarrollo , Riñón/inmunología , Riñón/metabolismo , Lipopolisacáridos/farmacología , Especificidad de Órganos , Oryzias/embriología , Oryzias/crecimiento & desarrollo , Oryzias/inmunología , Poli I-C/farmacología , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Distribución Aleatoria , Proteínas Represoras/química , Proteínas Represoras/genética , Alineación de Secuencia , Bazo/efectos de los fármacos , Bazo/crecimiento & desarrollo , Bazo/inmunología , Bazo/metabolismo
17.
Gene ; 626: 149-157, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28495578

RESUMEN

Fundc1 is a mitochondrial outer membrane protein and plays important roles in mitochondria fission and hypoxia-induced mitophagy in mammalian cells. However, there is no relevant report of fundc1 in fish. In the present study, we cloned a 942bp fundc1 cDNA from rare minnow. The cDNA, designated as Grfundc1 cDNA, contains an open reading frame (ORF) of 459bp which encodes a polypeptide of 152 amino acid residues. Comparisons of deduced amino acid sequences demonstrated that Grfundc1 was highly homologous with those of other vertebrates. RT-PCR and real time PCR detection revealed that the transcripts of Grfundc1 were not detectable in the unfertilized eggs and had high levels at blastula and gastrula stages. Whole mount in situ hybridization analysis observed that Grfundc1 was ubiquitously expressed at early stage and later riched in specific regions, such as brain, branchial arch, eye and somite during embryogenesis. Grfundc1 was expressed in all the tissues of rare minnow adult, including brain, liver, gill, eyes, heart, kidney, intestine, muscle, testis and ovary. The expression of Grfundc1 in the brain, gill, heart and eye of rare minnow adult was significantly down-regulated by hypoxia. Similar hypoxic response was observed in the rare minnow embryos at 48hpf following hypoxia exposure. Functional analysis showed that knockdown of Grfundc1 significantly caused defects in the body axis and dorsal neural tissues of rare minnow embryos. These results indicate that Grfundc1 may play important roles in embryogenesis in fish.


Asunto(s)
Cyprinidae/genética , Proteínas de Peces/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Animales , Cyprinidae/embriología , Proteínas de Peces/metabolismo , Hipoxia/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Especificidad de Órganos , Estrés Fisiológico
18.
J Magn Reson Imaging ; 44(3): 698-706, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26841951

RESUMEN

PURPOSE: To investigate the potential of intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) in assessment of renal fibrosis using a rat model of unilateral ureteral obstruction (UUO). MATERIALS AND METHODS: Thirty-two UUO rats were created by complete ligation of the left ureter. IVIM was performed on a clinical 3.0T whole-body MRI scanner before the ligation (day 0) and on days 1, 3, 5, and 7 after ligation, and followed by histological analysis to examine α-smooth muscle actin (α-SMA) expression and tubulointerstitial lesion (TIL). IVIM parameters of renal cortex and medulla were measured. Changes in each parameter with time were analyzed and correlated with α-SMA expression level and grades of TIL. RESULTS: The apparent diffusion coefficient (ADC), true diffusion (D), and fractional perfusion (f) values between the cortex and inner medulla and between the cortex and outer medulla were found to be significantly different (P < 0.01). The average ADC, D, D*, and f values of renal cortex, outer medulla, and inner medulla on the UUO side significantly decreased over time (P < 0.05), and negatively correlated with both α-SMA expression level and TIL grades (Spearman Correlation Coefficient r: ADC and α-SMA.805, -0.707, -0.805; ADC and TIL: -0.758, -0.761, -0.810; D and α-SMA: -0.782, -0.486, -0.833; D and TIL: -0.518, -0.504, -0.826; D* and α-SMA: -0.707, -0.605, -0.639; D* and TIL: -0.450, -0.670, -0.701; f and α-SMA: -0.866, -0.872, -0.863; and TIL: -0.870, -0.875, -0.863). CONCLUSIONS: IVIM MRI shows great potential in noninvasive assessment of renal fibrosis induced by UUO. J. Magn. Reson. Imaging 2016;44:698-706.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Riñón/diagnóstico por imagen , Riñón/patología , Imagen por Resonancia Magnética/métodos , Obstrucción Ureteral/diagnóstico por imagen , Obstrucción Ureteral/patología , Algoritmos , Animales , Femenino , Fibrosis , Aumento de la Imagen/métodos , Masculino , Movimiento (Física) , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
19.
Fish Physiol Biochem ; 42(3): 1053-61, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26749004

RESUMEN

Protein arginine methylation is important for gene regulation and biological processes. Methylosome protein 50 (Mep50) is identified as a partner of protein arginine methyltransferase 5 (Prmt5), a major enzyme capable of symmetric dimethylation, in mammals and Xenopus. The isolation and characterization of medaka mep50 were reported in this paper. Medaka Mep50 is a homolog of human MEP50 with six WD40 domains. Medaka mep50 was ubiquitously expressed in the adult tissues and had maternal origin with continuous and dynamical expression during embryonic development detected by RT-PCR and in situ hybridization. A strong interaction of medaka Mep50 and Prmt5 was shown by yeast two hybridization. The expression pattern of mep50 is similar to that of prmt5 in medaka. The results suggested that medaka Mep50 could be a partner of Prmt5 and might play major roles in a variety of tissues in medaka.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Peces/genética , Oryzias/genética , Proteína-Arginina N-Metiltransferasas/genética , Animales , Embrión no Mamífero , Técnicas del Sistema de Dos Híbridos
20.
PLoS One ; 10(4): e0122454, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25874690

RESUMEN

BACKGROUND: Obstructed nephropathy is a common complication of several disease processes. Accurate evaluation of the functional status of the obstructed kidney is important to achieve a good outcome. The purpose of this study was to investigate renal cortical and medullary perfusion changes associated with unilateral ureteral obstruction (UUO) using whole-organ perfusion imaging with 320-detector row computed tomography (CT). METHODOLOGY/PRINCIPLE FINDINGS: Sixty-four patients with UUO underwent whole-organ CT perfusion imaging. Patients were divided into 3 groups, mild, moderate, and severe, based on hydronephrosis severity. Twenty sex- and age-matched patients without renal disease, who referred to abdominal CT, were chosen as control subjects. Mean cortical and medullary perfusion parameters of obstructed and contralateral kidneys were compared, and mean perfusion ratios between obstructed and contralateral kidneys were calculated and compared. Mean cortical or medullary blood flow (BF) and blood volume (BV) of the obstructed kidneys in the moderate UUO and BF, BV, and clearance (CL) in the severe UUO were significantly lower than those of the contralateral kidneys (p < 0.05). The mean cortical or medullary BF of the obstructed kidney in the moderate UUO, and BF, BV, and CL in the severe UUO were significantly lower than those of the kidneys in control subjects (p < 0.05). Mean cortical or medullary BF of the non-obstructed kidneys in the severe UUO were statistically greater than that of normal kidneys in control subjects (p < 0.05). An inverse correlation was observed between cortical and medullary perfusion ratios and grades of hydronephosis (p < 0.01). CONCLUSIONS/SIGNIFICANCE: Perfusion measurements of the whole kidney can be obtained with 320-detector row CT, and estimated perfusion ratios have potential for quantitatively evaluating UUO renal injury grades.


Asunto(s)
Hidronefrosis/fisiopatología , Riñón/fisiopatología , Tomografía Computarizada por Rayos X/métodos , Obstrucción Ureteral/fisiopatología , Adulto , Anciano , Femenino , Humanos , Hidronefrosis/complicaciones , Riñón/irrigación sanguínea , Riñón/patología , Masculino , Persona de Mediana Edad , Perfusión , Imagen de Perfusión/métodos , Reproducibilidad de los Resultados , Índice de Severidad de la Enfermedad , Obstrucción Ureteral/complicaciones , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...