Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 35(1): 73-79, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38511442

RESUMEN

Alien invasive plants have been found in the semi-arid region of Northeast China for a long time, but the overall invasion situation is rarely reported. In this study, we established a database of alien invasive plants in the semi-arid area of Northeast China through field investigation, specimen collection, research of specimen online information platform and literature. The results showed that there were 34 species of alien invasive plants belonging to 26 genera and 10 families in the semi-arid area of Northeast China, among which the Composite family had the largest number of richness, with 9 genera (34.6%) and 11 species (32.4%). There were 15 species (44.1%) in 11 genera (42.3%) of Legumes, Solanaceae and Gramineae. In all the alien invasive plants, 33 species were herbaceous plants, being overwhelmingly dominant (97.1%). There were both 7 species of countrywide invasive plants with invasive grade 1 and 2, each accounting for 20.6% of the total. The number of species with invasive grade 4 was the largest, 17 species, accounting for 50% of the total. The invasive plants originated in North America and Europe was the most, accounting for 64.7%, while those from South America, Asia and Africa accounted for 35.3%. Totally, 44.1% of all the invasive alien plants were intentionally introduced, while 55.9% were unintentionally introduced. In the semi-arid area of Northeast China, 81.3% of the counties (cities) had the distribution of alien invasive plants, and the invasion situation was very serious.


Asunto(s)
Especies Introducidas , Plantas , Humanos , Europa (Continente) , China , Verduras , Ecosistema
2.
Plants (Basel) ; 13(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256808

RESUMEN

Vegetation on dunes regulates the water supply from the dunes to the inter-dune lowland, which is a crucial factor affecting lake water dynamics in the inter-dune lowland. Previous researchers have paid insufficient attention to the water regulation function of dunes on a landscape- and regional scale. To fill this gap, both remote sensing technology and field observations were used to analyze the variations in the lake area and their influence factors, such as vegetation coverage and precipitation in the lake watershed, on a multi-year scale (2000-2020) and one-year scale (2021), respectively. The results showed that precipitation is the main factor influencing the changes in lake water, and artificial sand vegetation can regulate the changes in lake water. On the multi-year scale, with the coverage of artificial sand-fixing vegetation increasing on sand dunes in the lake watershed, the areas of the lakes were gradually decreasing. On the one-year scale, with dune vegetation coverage increased, the water supply from dunes to lakes showed a decreasing trend. This model can provide a possibility for estimating and predicting the influence of water supply from dunes to lakes that is affected by sand-fixing vegetation. The findings have significant theoretical and practical utility for the rational utilization of water resources in sandy land, as well as for assisting in the selection of an optimized construction mode for desert control projects.

3.
Front Plant Sci ; 14: 1330664, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38250452

RESUMEN

Introduction: Belowground bud banks play integral roles in vegetation regeneration and ecological succession of plant communities; however, human-caused changes in land use severely threaten their resilience and regrowth. Although vegetation attributes and soil properties mediate such anthropogenic effects, their influence on bud bank size and composition and its regulatory mechanisms under land use change have not been explored. Methods: We conducted a field investigation to examine impacts of land use change on bud bank size and composition, vegetation attributes, and soil properties in wetlands (WL), farmlands (FL), and alpine meadow (AM) ecosystems in Zhejiang Province, China. Results: Overall, 63 soil samples in close proximity to the vegetation quadrats were excavated using a shovel, and samples of the excavated soil were placed in plastic bags for onward laboratory soil analysis. The total bud density (1514.727 ± 296.666) and tiller bud density (1229.090 ± 279.002) in wetland ecosystems were significantly higher than in farmland and alpine meadow ecosystems [i.e., total (149.333 ± 21.490 and 573.647 ± 91.518) and tiller bud density (24.666 ± 8.504 and 204.235 ± 50.550), respectively]. While vegetation attributes critically affected bud banks in WL ecosystems, soil properties strongly influenced bud banks in farmland and alpine meadow ecosystems. In wetland ecosystems, total and tiller buds were predominantly dependent on soil properties, but vegetation density played a significant role in farmlands and alpine meadow ecosystems. Root sprouting and rhizome buds significantly correlated with total C in the top 0 - 10 cm layer of farmland and alpine meadow ecosystems, respectively, and depended mainly on soil properties. Discussion: Our results demonstrate that land use change alters bud bank size and composition; however, such responses differed among bud types in wetland, farmland, and alpine meadow ecosystems.

4.
Sci Rep ; 12(1): 18288, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316398

RESUMEN

This study aims to make clear of grassland coverage change and quantitative assessment its effect factors. We collected the data from the National Bureau of Statistics ( http://www.stats.gov.cn ) and "China 20th Century Land Use/Cover Change (LUCC) Spatio-temporal Platform". Grassland coverage area showed an upward trend from 1980 to 1990, and the grassland coverage area is gradually decreasing from 1990 to 2000, and the grassland coverage area has not changed much from 2000 to 2018. The medium-coverage grassland area has the highest correlation with the total population, and the high-coverage grassland area has the lowest correlation with the total population. Land use types and the composite of gross agricultural output have influence on grassland coverage area. It is hoped that relevant policies should consider land use types and ecological benefits while balancing economic development and urban development.


Asunto(s)
Conservación de los Recursos Naturales , Pradera , Agricultura , China , Ecosistema
5.
Sci Rep ; 12(1): 63, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996929

RESUMEN

Seed dispersal has received much research attention. The plant canopy can intercept diaspores, but the effect of the plant canopy (the aboveground portion of a plant consisting of branches and leaves) on dispersal distance has not been explored empirically. To determine the effect of plant canopy on seed dispersal distance, a comparison of diaspores falling through open air and through plant canopy was made in a wind tunnel using three wind speeds and diaspores with various traits. Compared with diaspores falling through open air, the dispersal distance of diaspores falling through plant canopy was decreased or increased, depending on wind speed and diaspore traits. When falling through a plant canopy, dispersal distance of diaspores with thorns or those without appendages was promoted at low wind speed (2 m s-1), while that of diaspores with low wing loading (0.5 mg mm-2) and terminal velocity (2.5 m s-1) was promoted by relatively high (6 m s-1) wind speed. A plant canopy could increase seed dispersal distance, which may be due to the complicated updraft generated by canopy. The effect of maternal plants on seed dispersal regulates the distribution pattern and the species composition of the community.


Asunto(s)
Componentes Aéreos de las Plantas/crecimiento & desarrollo , Dispersión de Semillas , Semillas/crecimiento & desarrollo , Viento , Movimiento (Física) , Hojas de la Planta/crecimiento & desarrollo , Factores de Tiempo
6.
Sci Rep ; 11(1): 7187, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785794

RESUMEN

Dispersal ability is important for the introduction, establishment, and spread of alien plant species. Therefore, determination of the geographical distribution of the dispersal ability of such species, and the relationship between dispersal ability and socio-climatic factors are essential to elucidate the invasion strategies of the alien plant species. Analytic hierarchy process and inventory, risk rank, and dispersal mode data available on Chinese alien plant species were used to determine their dispersal ability, the geographical distribution thereof, and the relationship between socio-climatic factors and dispersal ability. High-risk alien plant species had a higher natural dispersal ability (or several natural dispersal modes) but a lower anthropogenic dispersal ability (or few anthropogenic dispersal modes) than low-risk alien plant species. The geographical distribution of the dispersal ability of the alien plant species showed an inverse relationship with species density. Alien plant species with low dispersal ability (i.e., with fewer dispersal modes and distribution in the southeast) showed a tendency to adapt to environments with mild climates, while those with high dispersal ability (i.e., with more disposal nodes and distribution in the northwest) showed a tendency to adapt to harsh environments. It is essential for land managers and policy makers to understand the geographical distribution of the dispersal ability of alien plant species and their socio-climatic control factors to formulate strategies to control the natural and anthropogenic dispersal of such plants.

7.
Sci Total Environ ; 749: 141443, 2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-32829271

RESUMEN

Determination of dispersal strategies of alien species and its relationship with social and climatic factors are essential to understand the mechanisms of species invasion and adaption. Based on morphological trait, dispersal mode, and dispersal agent of diaspore of 562 alien species across China, we determined: (i) the proportions of five dispersal strategies (i.e., autochory, anemochory, hydrochory, zoochory, and anthropochory), (ii) the relationships between the dispersal strategies and socio-climatic factors in 34 administrative regions across China, and (iii) the correlations between different dispersal strategies. Anthropochory, zoochory, and anemochory account for nearly 90.0% of all the dispersal strategies of alien species. Mean frost days (MFD), mean annual humidity (MAH), and gross domestic product (GDP) were the main climatic and social factors that were correlated to different dispersal strategies. Zoochory was positively related to MFD, but negatively related to the autochory and anthropochory. MAH negatively influenced the anemochory, while GDP positively influenced the hydrochory. We classified the six dispersal strategies into two groups based on the correlations among dispersal strategies, group I included autochory and anthropochory, and group II included anemochory, hydrochory, and zoochory. Within a group, dispersal strategies were positively correlated, while between groups, dispersal strategies were negatively correlated. Positive correlation between different strategies might be co-owned while negative correlation between different strategies might not be co-owned by one alien species. Understanding the characteristics of the dispersal strategies of alien species is important for policy makers when controlling the dispersal of malignant invasive alien species, predicting the distribution, and decreasing or cutting off the dispersal pathways of invasive alien species.


Asunto(s)
Especies Introducidas , Factores Sociales , China
8.
J Exp Bot ; 71(14): 4298-4307, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32242240

RESUMEN

Lift-off velocity may be the most useful surrogate to measure the secondary dispersal capacity of diaspores. However, the most important diaspore attribute determining diaspore lift-off velocity is unclear. Furthermore, it is not known whether terminal velocity used to characterize the primary dispersal capacity of diaspores can also be used to predict their secondary wind dispersal capacity. Here, we investigate how diaspore attributes are related to lift-off velocity. Thirty-six species with diaspores differing in mass, shape index, projected area, wing loading, and terminal velocity were used in a wind tunnel to determine the relationship between diaspore attributes and lift-off velocity. We found that diaspore attributes largely explained the variation in lift-off velocity, and wing loading, not terminal velocity, was the best parameter for predicting lift-off velocity of diaspores during secondary wind dispersal. The relative importance of diaspore attributes in determining lift-off velocity was modified by both upwind and downwind slope directions and type of diaspore appendage. These findings allow us to predict diaspore dispersal behaviors using readily available diaspore functional attributes, and they indicate that wing loading is the best proxy for estimating the capacity for secondary dispersal by wind.


Asunto(s)
Semillas , Animales
9.
Sci Total Environ ; 722: 137929, 2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32208272

RESUMEN

Determination of the geographical distribution and life-form spectra of alien species with different invasive abilities are essential to understand the process of invasion and to develop measures to manage alien species. Based on six classifications of Chinese alien species, environmental and social data, we determined species density, life-form spectrum of alien species, and the relationship between species density of alien species and climatic or social factors. The species density of alien species increased from the northwest to the southeast regions of China for all the six ranks. The boundary line between low and high species density of alien species was consistent with the dividing line of population density (the "Hu Line"). Mean annual precipitation was the most important factor for species density in malignant invaders, serious invaders, local invaders, and species requiring further observation (Ranks I, II, III, and V, respectively). Gross domestic product per square kilometer and annual minimum temperature were the most important factors in mild invaders and cultivated aliens (Ranks IV and VI, respectively). Annual and biennial herbs made up 52.9% to 71.2% of total species in Ranks I to IV; shrubs and trees 3.7% to 14.7%. The annual and biennial herbs were 35.5% and 32.6%, and the shrubs and trees were 25.3% and 31.6% in Ranks IV and VI. Results implied that precipitation was the most important factor on species density for the invasive alien species. However, social factors and temperature were the most important factors for the non-invasive alien species. The invasive alien species had a high proportion of annual and biennial herbs and non-invasive alien had a high proportion of shrubs and trees. It is important to understand the geographical distribution and life-form spectra of various invasive alien species for alien species controls.


Asunto(s)
Ecosistema , Especies Introducidas , China , Densidad de Población
10.
Funct Plant Biol ; 46(12): 1063-1071, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31630725

RESUMEN

The structure and dynamics of plant populations and communities are largely influenced by seed dispersal. How the wind dispersal trajectory of seeds shifts with differences in seed morphology remains unknown. We used a wind tunnel and video camera to track the dispersal trajectory of seven species of Calligonum whose seeds have different kinds of appendages and other morphological traits, using variable wind speeds and release heights to determine the relationship between seed morphological traits and wind dispersal trajectory. Concave-, straight-line-, horizontal-projectile- and projectile-shaped trajectories were found. Dispersal trajectories such as the horizontal projectile (HP) and projectile (P) tended to have a long dispersal distance. Straight line (SL) and concave curve (CC) trajectories tended to have a short dispersal distance. Seeds with bristles and large mass tended to have SL and CC trajectories, those with wings or balloon and small mass tended to have HP and P trajectories. Wind speed tended to have a stronger influence on the dispersal trajectory of light and low-wing-loading seeds, and release height tended to have a stronger influence on the dispersal trajectory of heavy and high-wing-loading seeds. Thus, seed wind dispersal trajectory is not only determined by seed morphological characteristics but also by environmental factors such as wind speed and release height.


Asunto(s)
Dispersión de Semillas , Semillas
11.
Bull Environ Contam Toxicol ; 82(1): 85-9, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18941700

RESUMEN

A soil column leaching experiment was conducted to study the vertical migration of phosphorus in aquic brown soil and light chernozem under different phosphorus fertilization rates. The results showed that total dissolved phosphorus concentration in the leachates from the two soils was nearly the same, but dissolved inorganic phosphorus concentration was obviously different. In all fertilization treatments, aquic brown soil had a higher content of phosphorus in calcium chloride extracts compared with light chernozem. But Olsen phosphorus content was higher at the soil depth beneath 0-20 cm, and increased with increasing phosphorus application rate.


Asunto(s)
Agricultura , Monitoreo del Ambiente/métodos , Fertilizantes , Fósforo/análisis , Contaminantes del Suelo/análisis , Suelo/análisis , Contaminantes Químicos del Agua/análisis , Cloruro de Calcio/química , China , Cinética , Contaminantes del Suelo/química , Movimientos del Agua
12.
Ying Yong Sheng Tai Xue Bao ; 17(10): 1845-8, 2006 Oct.
Artículo en Chino | MEDLINE | ID: mdl-17209381

RESUMEN

An anaerobic incubation test was conducted to study the effects of different P application rate on the P concentrations in paddy soil and its surface water. The results showed that soil available P (Olsen-P) decreased rapidly at the beginning, but approached to stable after 60 days of P application. Both Olsen-P and residual P increased with increasing P application rate, and Olsen-P had a positive correlation with P application rate, suggesting that the test soil had a strong P adsorption capacity. After P application, the total P (TP) in soil surface water increased rapidly, and then decreased slowly, showing that there was a P exchange between soil and its surface water. After 120 days of P application, there was an exponential relationship between soil surface water TP and P application. The TP in soil surface water increased rapidly when the P application rate was 400 - 800 kg x hm (-2) , and easy to be lost when the P application rate was higher than 800 kg x hm(-2). The simulation with split line model on the relationship between soil Olsen-P and soil surface water TP showed that the change point of soil Olsen-P, which induced a sharp increase of soil surface water TP concentration, was 82. 7 mg x kg( -l) , corresponding to a P application rate being about 712 x kg hm(-2). Soil Olsen-P could be a good indicator in forecasting the P loss from soil surface water.


Asunto(s)
Fertilizantes , Oryza/crecimiento & desarrollo , Fósforo/análisis , Suelo/análisis , Agua/análisis , Modelos Teóricos , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...