Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(18): 184001, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38759191

RESUMEN

Nanoscale extension and refinement of the Lucas-Washburn model is presented with a detailed analysis of recent experimental data and extensive molecular dynamics simulations to investigate rapid water flow and water imbibition within nanocapillaries. Through a comparative analysis of capillary rise in hydrophilic nanochannels, an unexpected reversal of the anticipated trend, with an abnormal peak, of imbibition length below the size of 3 nm was discovered in hydrophilic nanochannels, surprisingly sharing the same physical origin as the well-known peak observed in flow rate within hydrophobic nanochannels. The extended imbibition model is applicable across diverse spatiotemporal scales and validated against simulation results and existing experimental data for both hydrophilic and hydrophobic nanochannels.

2.
ESC Heart Fail ; 11(4): 2138-2147, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38600875

RESUMEN

AIMS: Both hypercapnia and hypocapnia are common in patients with acute heart failure (AHF), but the association between partial pressure of arterial carbon dioxide (PaCO2) and AHF prognosis remains unclear. The objective of this study was to investigate the connection between PaCO2 within 24 h after admission to the intensive care unit (ICU) and mortality during hospitalization and at 1 year in AHF patients. METHODS AND RESULTS: AHF patients were enrolled from the Medical Information Mart for Intensive Care IV database. The patients were divided into three groups by PaCO2 values of <35, 35-45, and >45 mmHg. The primary outcome was to investigate the connection between PaCO2 and in-hospital mortality and 1 year mortality in AHF patients. The secondary outcome was to assess the prediction value of PaCO2 in predicting in-hospital mortality and 1 year mortality in AHF patients. A total of 2374 patients were included in this study, including 457 patients in the PaCO2 < 35 mmHg group, 1072 patients in the PaCO2 = 35-45 mmHg group, and 845 patients in the PaCO2 > 45 mmHg group. The in-hospital mortality was 19.5%, and the 1 year mortality was 23.9% in the PaCO2 < 35 mmHg group. Multivariate logistic regression analysis showed that the PaCO2 < 35 mmHg group was associated with an increased risk of in-hospital mortality [hazard ratio (HR) 1.398, 95% confidence interval (CI) 1.039-1.882, P = 0.027] and 1 year mortality (HR 1.327, 95% CI 1.020-1.728, P = 0.035) than the PaCO2 = 35-45 mmHg group. The PaCO2 > 45 mmHg group was associated with an increased risk of in-hospital mortality (HR 1.387, 95% CI 1.050-1.832, P = 0.021); the 1 year mortality showed no significant difference (HR 1.286, 95% CI 0.995-1.662, P = 0.055) compared with the PaCO2 = 35-45 mmHg group. The Kaplan-Meier survival curves showed that the PaCO2 < 35 mmHg group had a significantly lower 1 year survival rate. The area under the receiver operating characteristic curve for predicting in-hospital mortality was 0.591 (95% CI 0.526-0.656), and the 1 year mortality was 0.566 (95% CI 0.505-0.627) in the PaCO2 < 35 mmHg group. CONCLUSIONS: In AHF patients, hypocapnia within 24 h after admission to the ICU was associated with increased in-hospital mortality and 1 year mortality. However, the increase in 1 year mortality may be influenced by hospitalization mortality. Hypercapnia was associated with increased in-hospital mortality.


Asunto(s)
Insuficiencia Cardíaca , Mortalidad Hospitalaria , Hipocapnia , Humanos , Mortalidad Hospitalaria/tendencias , Masculino , Insuficiencia Cardíaca/mortalidad , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/complicaciones , Femenino , Anciano , Hipocapnia/sangre , Hipocapnia/mortalidad , Hipocapnia/fisiopatología , Enfermedad Aguda , Pronóstico , Estudios Retrospectivos , Factores de Tiempo , Tasa de Supervivencia/tendencias , Estudios de Seguimiento , Unidades de Cuidados Intensivos , Dióxido de Carbono/sangre , Persona de Mediana Edad , Factores de Riesgo
3.
Environ Sci Pollut Res Int ; 31(7): 10184-10197, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37160521

RESUMEN

Grass carp (Ctenopharyngodon idellus) is the most productive freshwater fish in China, but its traditional aquaculture model still has problems, such as poor water quality and frequent diseases. We have taken monoculture and 80:20 polyculture grass carp ponds as the research object and used EwE software to build the Ecopath model of two ponds. We analyzed and compared the characteristics of ecological structure and energy flow in two ponds. The result showed the highest effective trophic level in the polyculture pond that was higher than that in the monoculture pond, and fish in polyculture had higher EE values which showed the production of fish in polyculture contributed more to the energy conversion efficiency of the ecosystem. Flows into detritus were the largest component of TST both in the two ponds, which accounted for 49.34% and 50.37%. And the average transfer efficiency in monoculture was 13.07%, while that in polyculture was 15.6%. The ascendency/total development capacity (A/TDC) and overhead/total development capacity (O/TDC) were 0.35 and 0.65 both in the two ponds, respectively, which indicated that both systems had a strong anti-perturbation ability, but the stability could be improved. Finn's cycling index (FCI) in polyculture was higher and showed that the polyculture pond was more mature and stable. Unused energy of functional groups will flow to detritus, and that in the monoculture pond was higher, the energy of C. idellus that flowed to detritus in monoculture was 48.17% higher than that in polyculture; unused energy of bacteria and phytoplankton were also high. The result showed that polyculture could improve energy utilization, increase transfer efficiency, and raise the stability of the ecosystem. Grass carp ponds still need to be improved in the aspects of mixed species and energy consumption. It is necessary to improve the ecological and economic benefits of grass carp ponds by optimizing the aquaculture structure and adjusting the aquaculture proportion.


Asunto(s)
Carpas , Animales , Estanques/química , Ecosistema , Agua Dulce , China , Acuicultura
4.
J Phys Chem B ; 127(18): 4090-4098, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37105181

RESUMEN

Monolayer water can be formed under extreme confinement and will present distinctive thermodynamic properties compared with bulk water. In this work, we perform molecular dynamics simulations to study the thermal conductivity of monolayer water confined in graphene channels, finding an unexpected way of thermal conductivity of monolayer water dependent on its number density, which has a close correlation with the structure of water. The monolayer water is in an amorphous state, and its thermal conductivity increases linearly with the area density when the water density is low at first. Then, the thermal conductivity increases as the number density of water rises, which is attributed to the formation of a crystal structure and the reduction of crystal defects as the number of water molecules increases. After reaching the zenith, the thermal conductivity decreases rapidly owing to the formation of a wrinkle structure of monolayer water with excessive water molecules, which weakens the phonon dispersion. Moreover, we further investigate the remarkable effects of the channel height on both the structure and thermal conductivity of monolayer water. In summary, this study demonstrates the close connection between the thermal conductivity of monolayer water and its structure, contributing to not only expanding the understanding of the thermodynamic property of nanoconfined water but also benefiting the engineering applications for nanofluidics.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36231329

RESUMEN

An integrated multi-trophic aquaculture system (IMTA) combined muti-trophic organism cultivation with ecological engineering facilities effectively improves energy utilization efficiency and reduces pollution emission, which promotes the development of the aquaculture industry. In this study, an Ecopath model was used to analyze the Pelteobagrus fulvidraco-integrated multi-trophic aquaculture system (FMRP). The results showed that the effective trophic level range of FMRP was low (1~2.566), and the energy throughput was mainly concentrated in trophic level I (65.39%). The utilization rate of commercial fish feed was high. Due to the lack of predators for detritus and primary producers (Oryza sativa L. and hydrophyte), the energy throughput of detritus and the primary production were not fully utilized. The ascendency/total development capacity (A/TDC) and overhead/total development capacity (O/TDC) were 0.29 and 0.59, respectively, which indicated that the aquaculture system had high elasticity and strong anti-perturbation ability, but the stability could be substantially improved. The results of the carrying capacity assessment showed that the maximal single increments of Pelteobagrus fulvidraco fry and juvenile were 0.12 g/m2 and 0.42 g/m2, respectively, and the maximal common increments of Pelteobagrus fulvidraco fry and juvenile were 0.10 g/m2 and 0.10 g/m2, respectively, which indicated that there was insufficient space for increment. The study showed that the FMRP still needed to be improved in the aspects of polyculture species, energy consumption and stability. It would be necessary for the FMRP to perform further optimization and enhancement on the energy utilization efficiency, system stability and comprehensive benefits.


Asunto(s)
Acuicultura , Bagres , Animales , Conservación de los Recursos Naturales
6.
Front Microbiol ; 12: 775794, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917055

RESUMEN

The excessive ammonia produced in pond aquaculture processes cannot be ignored. In this review, we present the distribution and diversity of ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing bacteria (AnAOB) in the pond environment. Combined with environmental conditions, we analyze the advantages of AOA and AnAOB in aquaculture water treatment and discuss the current situation of pond water treatment engineering involving these microbes. AOA and AnAOB play an important role in the nitrogen removal process of aquaculture pond water, especially in seasonal low temperatures and anoxic sediment layers. Finally, we prospect the application of bioreactors to purify pond aquaculture water using AOA and AnAOB, in autotrophic nitrogen removal, which can reduce the production of greenhouse gases (such as nitrous oxide) and is conducive to the development of environmentally sustainable pond aquaculture.

7.
Langmuir ; 37(20): 6158-6167, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33969992

RESUMEN

Water flow through two-dimensional nanopores has attracted significant attention owing to the promising water purification technology based on atomically thick membranes. However, the theoretical description of water flow in nanopores based on the classical continuum theory is very challenging owing to the pronounced entrance/exit effects. Here, we extend the classical Hagen-Poiseuille equation for describing the relationship between flow rate and pressure loss in laminar tube flow to two-dimensional nanopores. A totally theoretical model is established by appropriately considering the velocity slip on pore surfaces both in the friction pressure loss and entrance/exit pressure loss. Based on molecular dynamics simulations of water flow through graphene nanopores, it is shown that the model can not only well predict the overall flow rate but also give a good estimation of the velocity profiles. As the pore radius and length increase, the model can reduce to the equations applicable to the fluid flow in infinitely/finitely long nanotubes, thin orifices, and macroscale tubes, showing an accurate prediction of the existing experimental and simulation data of the water flow through nanotubes and nanopores in the literature. Namely, the presented model is a unified model that can uniformly describe the fluid flow from nanoscales to macroscales by modifying the classical continuum theory.

8.
Phys Chem Chem Phys ; 23(12): 7057-7065, 2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33690758

RESUMEN

We establish a theoretical model to describe the surface molecular permeation through two-dimensional graphene nanopores based on the surface diffusion equation and Fick's law. The model is established by considering molecular adsorption and desorption from the surface adsorption layer and the molecular diffusion and concentration gradient on the graphene surface. By comparing with the surface flux obtained from molecular dynamics simulations, it is shown that the model can predict well the overall permeation flux especially for strongly adsorbed molecules (i.e. CO2 and H2S) on graphene surfaces. Although good agreement between the theoretical and simulated density distribution is hard to achieve owing to the large uncertainty in the calculation of surface diffusion coefficients based on the Einstein equation, the model itself is very competent to describe the surface molecular permeation both from the aspects of the overall permeation flux and detailed density distribution. This model is believed to supplement the theoretical description of molecular permeation through graphene nanopores and provide a good reference for the description of mass transport through two-dimensional porous materials.

9.
J Chem Phys ; 154(7): 074709, 2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33607889

RESUMEN

The accurate determination of fluid viscosity based on the microscopic information of molecules is very crucial for the prediction of nanoscale flow. Despite the challenge of this problem, researchers have done a lot of meaningful work and developed several distinctive methods. However, one of the common approaches to calculate the fluid viscosity is using the Green-Kubo formula by considering all the fluid molecules in nanospace, inevitably causing the involvement of the frictional interaction between fluid and the wall into the fluid viscosity. This practice is certainly not appropriate because viscosity is essentially related only to the interactions among fluid molecules. Here, we clarify that the wall friction should be decoupled from fluid viscosity by distinguishing the frictional region and the viscous region for the accurate prediction of nanoscale flow. By comparing the fluid viscosities calculated from the Green-Kubo formula in the whole region and viscous region and the viscosity obtained from the velocity profile through the Hagen-Poiseuille equation, it is found that only the calculated viscosity in the viscous region agrees well with the viscosity from the velocity profile. To demonstrate the applicability of this clarification, the Lennard-Jones fluid and water confined between Lennard-Jones, graphene, and silica walls, even with different fluid-wall interactions, are extensively tested. This work clearly defines the viscosity of fluids at nanoscales from the inherent nature of physics, aiming at the accurate prediction of nanoscale flow from the classical continuum hydrodynamic theory.

10.
J Chem Phys ; 153(23): 234701, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33353331

RESUMEN

The structure of nanoconfined fluids is particularly non-uniform owing to the wall interaction, resulting in the distinctive characteristic of thermal transport compared to bulk fluids. We present the molecular simulations on the thermal transport of water confined in nanochannels with a major investigation of its spatial distribution under the effects of wall interaction. The results show that the thermal conductivity of nanoconfined water is inhomogeneous and its layered distribution is very similar to the density profile. The layered thermal conductivity is the coupling result of inhomogeneous density and energy distributions that are generally diametrical, and their contributions to the thermal conductivity compensate with each other. However, the accumulative effect of water molecules is really dominating, resulting in a high thermal conductivity in the high-density layers with the low-energy molecules, and vice versa. Moreover, it is found that the adsorptive and repulsive interactions from solid walls have different roles in the hierarchical thermal transport in nanoconfined water. The adsorptive interaction is only responsible for the layered distribution of thermal conductivity, while the repulsive interaction is responsible for the overall thermal conductivity; accordingly, the thermal conductivity is independent of the strength of water-solid interactions. The identified hierarchical thermal transport in nanoconfined water and its underlying mechanisms have a great significance for the understanding of nanoscale thermal transport and even the mass and energy transport of nanoconfined fluids.

11.
J Phys Chem Lett ; 11(12): 4678-4692, 2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32442383

RESUMEN

Nanoconfined fluids (NCFs), which are confined in nanospaces, exhibit distinctive nanoscale effects, including surface effects, small-size effects, quantum effects, and others. The continuous medium hypothesis in fluid mechanics is not valid in this context because of the comparable characteristic length of spaces and molecular mean free path, and accordingly, the classical continuum theories developed for the bulk fluids usually cannot describe the mass and energy transport of NCFs. In this Perspective, we summarize the nanoscale effects on the thermodynamics, mass transport, flow dynamics, heat transfer, phase change, and energy transport of NCFs and highlight the related representative works. The applications of NCFs in the fields of membrane separation, oil and gas production, energy harvesting and storage, and biological engineering are especially indicated. Currently, the theoretical description framework of NCFs is still missing, and it is expected that this framework can be established by adopting the classical continuum theories with the consideration of nanoscale effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA