Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 257: 121743, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38728775

RESUMEN

Effective deep-dewatering is crucial for wastewater sludge management. Currently, the dominant methods focus on promoting cell lysis to release intracellular water, but these techniques often lead to secondary pollution and require stringent conditions, limiting their practical use. This study explores an innovative method using a commercially available complex quaternary ammonium salt surfactant, known as G-agent. This agent remarkably reduces the sludge water content from 98.6 % to 56.8 % with a low dosage (50 mg/g DS) and under neutral pH conditions. This approach surpasses Fenton oxidation in terms of dewatering efficiency and avoids the necessity for cell lysis and bound water release, thereby reducing the risk of secondary pollution in the filtrate, including heavy metals, nitrogen, phosphorus, and other contaminants. The G-agent plays a significant role in destabilizing flocs and enhancing flocculation during the conditioning and initial dewatering stages, effectively reducing the solid-liquid interfacial affinity of the sludge. In the compression filtration stage, the agent's solidification effect is crucial in forming a robust skeleton that improves pore connectivity within the filter cake, leading to increased water permeability, drainage performance and water flow-out efficiency. This facilitates deep dewatering of sludge without cell lysis. The study reveals that the G-agent primarily improves water flow-out efficiency rather than water flowability, indicating that cell lysis and bound water release are not indispensable prerequisites for sludge deep-dewatering. Furthermore, it presents an encouraging prospect for overcoming the limitations associated with conventional sludge deep-dewatering processes.

2.
Antonie Van Leeuwenhoek ; 117(1): 68, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630330

RESUMEN

In this research, two novel Fe(III)-reducing bacteria, SG10T and SG198T of genus Geothrix, were isolated from the rice field of Fujian Agriculture and Forestry University in Fuzhou, Fujian Province, China. Strains SG10T and SG198T were strictly anaerobic, rod-shaped and Gram-stain-negative. The two novel strains exhibited iron reduction ability, utilizing various single organic acid as the elector donor and Fe(III) as a terminal electron acceptor. Strains SG10T and SG198T showed the highest 16S rRNA sequences similarities to the type strains of Geothrix oryzisoli SG189T (99.0-99.5%) and Geothrix paludis SG195T (99.0-99.7%), respectively. The phylogenetic trees based on the 16S rRNA gene and genome 120 conserved core genes showed that strains SG10T and SG198T belong to the genus Geothrix. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the phylogenetic neighbors and the two isolated strains were 86.1-94.3% and 30.7-59.5%, respectively. The major fatty acids were iso-C15:0, anteiso-C15:0, C16:0 and iso-C13:0 3OH, and MK-8 was the main respiratory quinone. According to above results, the two strains were assigned to the genus Geothrix with the names Geothrix campi sp. nov. and Geothrix mesophila sp. nov. Type strains are SG10T (= GDMCC 1.3406 T = JCM 39331 T) and SG198T (= GDMCC 62910 T = KCTC 25635 T), respectively.


Asunto(s)
Compuestos Férricos , Suelo , Humanos , Filogenia , ARN Ribosómico 16S/genética , Acidobacteria , Bacterias , ADN
3.
Artículo en Inglés | MEDLINE | ID: mdl-38323900

RESUMEN

Three microaerophilic bacterial strains, designated SG22T, SG63T and SG29T were isolated from paddy soils in PR China. Cells of these strains were Gram-staining-negative and long rod-shaped. SG22T, SG63T and SG29T showed the highest 16S rRNA gene sequence similarities with the members of the genus Anaeromyxobacter. The results of phylogenetic and phylogenomic analysis also indicated that these strains clustered with members of the genus Anaeromyxobacter. The main respiratory menaquinone of SG22T, SG63T and SG29T was MK-8 and the major fatty acids were iso-C15 : 0, iso-C17 : 0 and C16 : 0. SG22T, SG29T and SG63T not only possessed iron reduction ability but also harboured genes (nifHDK) encoding nitrogenase. The genomic DNA G+C contents of SG22T, SG63T and SG29T ranged from 73.3 to 73.5 %. The average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) values between SG22T, SG63T and SG29T and the closely related species of the genus Anaeromyxobacter were lower than the cut-off values (dDDH 70 % and ANI 95-96 %) for prokaryotic species delineation. On the basis of these results, strains SG22T, SG63T and SG29T represent three novel species within the genus Anaeromyxobacter, for which the names Anaeromyxobacter terrae sp. nov., Anaeromyxobacter oryzisoli sp. nov. and Anaeromyxobacter soli sp. nov., are proposed. The type strains are SG22T (= GDMCC 1.3185T = JCM 35581T), SG63T (= GDMCC 1.2914T = JCM 35124T) and SG29T (= GDMCC 1.2911T = JCM 35123T).


Asunto(s)
Myxococcales , Bacterias Fijadoras de Nitrógeno , Compuestos Férricos , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Nucleótidos , Suelo
4.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37921447

RESUMEN

In this study, two novel alkalitolerant strains (FJAT-53046T and FJAT-53715T) were isolated from sediment samples collected in Zhangzhou, PR China. Phylogeny based on 16S rRNA gene sequences suggested that strains FJAT-53046T and FJAT-53715T were new members of the genus Pseudalkalibacillus. The two novel strains showed the highest 16S rRNA gene sequence similarity to Pseudalkalibacillus hwajinpoensis DSM 16206T, with values of 97.4 and 97.6 %, respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the two strains and the reference strain were 77.2 and 79.6 %, 20.9 and 30.2 %, respectively, which were below the prokaryotic species delineation thresholds. The ANI and dDDH values between strains FJAT-53046T and FJAT-53715T were 86.0 and 30.2 %, respectively, suggesting that they belonged to different species in the genus Pseudalkalibacillus. The major respiratory quinone in both strains was MK-7 and the major cellular fatty acids were anteiso-C15 : 0 and anteiso-C17 : 0. Diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine were the major polar lipids in both novel strains. Combined with results stemming from the determination of physical and biochemical characteristics, chemical properties, and genome analysis, strains FJAT-53046T and FJAT-53715T are proposed to represent two novel species of the genus Pseudalkalibacillus, for which the names Pseudalkalibacillus spartinae sp. nov. and Pseudalkalibacillus sedimenti sp. nov. are proposed. The type strains are FJAT-53046T (=GDMCC 1.3077T=JCM 35611T) and FJAT-53715T (=GDMCC 1.3076T=JCM 35610T), respectively.


Asunto(s)
Bacillus , Ácidos Grasos , Ácidos Grasos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Microbiología del Suelo , Pared Celular/química , Ácido Diaminopimélico/química , Peptidoglicano/química , Vitamina K 2/química
5.
mBio ; : e0215023, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37855611

RESUMEN

Nitrogen gas (N2) fixation driven by diazotrophs is a crucial process for supplying nitrogen to paddy soil ecosystems. The genus Geomonas has been considered to be an important potential diazotroph in paddy soils, but direct experimental evidence of the nitrogen-fixing ability of Geomonas in pure culture is still lacking. Hence, we aimed to demonstrate this nitrogen-fixing capability and shed light on how this process was regulated in response to ammonium (NH4 +) in Geomonas. In this study, we determined that a key nitrogenase gene (nifH) was present in 50 isolates from paddy soils. Members of Geomonas contained the minimum nitrogen fixation gene cluster (nifBHDKEN) based on genomic analysis, implying Geomonas species had the potential to fix nitrogen. Acetylene reduction assay (ARA), 15N2 isotope labeling, and total nitrogen accumulation assays validated that Geomonas was, indeed, able to fix nitrogen in pure culture. Under nitrogen-fixing conditions, the cell morphology of Geomonas changed from short rod-shaped (with NH4 +) to long rod-shaped and flagella became longer and thicker. The expression of genes correlated to nitrogen fixation in the Geomonas transcriptome was quantified in response to NH4 +. Expression of genes associated with nitrogenase, flavin-based electron bifurcation complexes (such as the FixAB system), NH4 + uptake, and transformation (e.g., glutamine and glutamate synthetases) were significantly upregulated under nitrogen-fixing conditions, suggesting these mechanisms might be involved in N2 fixation in Geomonas. These results were verified by RT-qPCR. Taken together, our results demonstrate that Geomonas species possess the ability to fix N2 and expand our understanding on the ecological significance and potential applications of Geomonas in paddy soil ecosystems. IMPORTANCE The ability of Geomonas species to fix nitrogen gas (N2) is an important metabolic feature for its application as a plant growth-promoting rhizobacterium. This research is of great importance as it provides the first comprehensive direct experimental evidence of nitrogen fixation by the genus Geomonas in pure culture. We isolated a number of Geomonas strains from paddy soils and determined that nifH was present in these strains. This study demonstrated that these Geomonas species harbored genes encoding nitrogenase, as do Geobacter and Anaeromyxobacter in the same class of Deltaproteobacteria. We demonstrated N2-dependent growth of Geomonas and determined regulation of gene expression associated with nitrogen fixation. The research establishes and advances our understanding of nitrogen fixation in Geomonas.

6.
Artículo en Inglés | MEDLINE | ID: mdl-37327059

RESUMEN

Mangrove bacteria largely compose the microbial community of the coastal ecosystem and are directly associated with nutrient cycling. In the present study, 12 Gram-negative and motile strains were isolated from a mangrove wetland in Zhangzhou, China. Pairwise comparisons (based on 16S rRNA gene sequences) and phylogenetic analysis indicated that these 12 strains belong to the genus Shewanella. The 16S rRNA gene sequence similarities among the 12 Shewanella strains and their related type strains ranged from 98.8 to 99.8 %, but they still could not be considered as known species. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between the 12 strains and their related type strains were below the cut-off values (ANI 95-96% and dDDH 70 %) for prokaryotic species delineation. The DNA G+C contents of the present study strains ranged from 44.4 to 53.8 %. The predominant menaquinone present in all strains was MK-7. The present study strains (except FJAT-53532T) also contained ubiquinones (Q-8 and Q-7). The polar lipid phosphatidylglycerol and fatty acid iso-C15 : 0 was noticed in all strains. Based on phenotypic, chemotaxonomic, phylogenetic and genomic comparisons, we propose that these 12 strains represent 10 novel species within the genus Shewanella, with the names Shewanella psychrotolerans sp. nov. (FJAT-53749T=GDMCC 1.2398T=KCTC 82649T), Shewanella zhangzhouensis sp. nov. (FJAT-52072T=MCCC 1K05363T=KCTC 82447T), Shewanella rhizosphaerae sp. nov. (FJAT-53764T=GDMCC 1.2349T=KCTC 82648T), Shewanella mesophila sp. nov. (FJAT-53870T=GDMCC 1.2346T= KCTC 82640T), Shewanella halotolerans sp. nov. (FJAT-53555T=GDMCC 1.2344T=KCTC 82645T), Shewanella aegiceratis sp. nov. (FJAT-53532T=GDMCC 1.2343T=KCTC 82644T), Shewanella alkalitolerans sp. nov. (FJAT-54031T=GDMCC 1.2347T=KCTC 82642T), Shewanella spartinae sp. nov. (FJAT-53681T=GDMCC 1.2345T=KCTC 82641T), Shewanella acanthi sp. nov. (FJAT-51860T=GDMCC 1.2342T=KCTC 82650T) and Shewanella mangrovisoli sp. nov. (FJAT-51754T=GDMCC 1.2341T= KCTC 82647T).


Asunto(s)
Ácidos Grasos , Shewanella , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Ecosistema , Humedales , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Composición de Base , Técnicas de Tipificación Bacteriana , Genómica
7.
Curr Microbiol ; 80(6): 207, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165205

RESUMEN

An anaerobic, Gram-staining-negative, rod shaped, nitrogen-fixing strain designed SG202T, was isolated from paddy soil collected from Fujian Province in China. Strain SG202T showed the highest 16S rRNA gene sequence similarity with the type strain Sulfurospirillum multivorans DSM 12446T (98.5%). Phylogenetic trees based on 16S rRNA gene sequences and conserved core genes from genomes indicated that strain SG202T branched with members of the genus Sulfurospirillum. Growth was observed at 25-37 °C (optimum 30 °C), pH 6.0-10.5 (optimum 7.5), and 0-0.6% (w/v) NaCl (optimum 0.2%). Strain SG202T contained MK-6 as the menaquinone and C16:1ω7c (40.6%), C16:0 (33.3%), C18:1ω7c (13.6%) and C14:0 (9.0%) as the major fatty acids. The genomic DNA G+C content was 39.0%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain SG202T and its closely related species S. multivorans DSM 12446T, Sulfurospirillum halorespirans DSM 13726T, Sulfurospirillum arsenophilum DSM 10659T and Sulfurospirillum diekertiae ACSDCET were 81.3, 81.5, 84.4, 82.2% and 24.5, 24.5, 27.9, 25.2%, respectively. All these values were lower than the recommended species delineation thresholds of ANI (95-96%) and dDDH (70%). Strain SG202T possessed core genes (nifHDK) of nitrogen fixation, and nitrogenase activities (3470.45 µmol C2H4 g-1 protein h-1) was examined using the acetylene reduction assay. Based on the observed physiological properties, chemotaxonomic characteristics and genome analysis, strain SG202T is recognized as a novel species of the genus Sulfurospirillum, for which the name Sulfurospirillum oryzae sp. nov. is proposed. The type strain is SG202T (= GDMCC 1.3379T= JCM 35596T).


Asunto(s)
Fosfolípidos , Suelo , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Ácidos Grasos/química , Bacterias/genética , Análisis de Secuencia de ADN
8.
Artículo en Inglés | MEDLINE | ID: mdl-37232488

RESUMEN

Two anaerobic, Fe(III)-reducing and Gram-stain-negative strains, designated SG12T and SG195T, were isolated from paddy soils in Fujian Province, PR China. Phylogenetic trees based on 16S rRNA genes and conserved core genes from genomes indicated that strains SG12T and SG195T clustered with members of the genus Geothrix. The two strains showed the highest 16S rRNA sequences similarities to the type strains of 'Geothrix terrae' SG184T (98.4-99.6 %), 'Geothrix alkalitolerans' SG263T (98.4-99.6 %) and Geothrix fermentans DSM 14018T (98.2-98.8 %). The average nucleotide identity and digital DNA-DNA hybridization values between the two strains and the closely related Geothrix species were 85.1-93.5 % and 29.8-52.9 %, respectively, lower than the cut-off level for prokaryotic species delineation. The menaquinone was MK-8 in both strains. The major fatty acids were iso-C15 : 0, anteiso-C15 : 0 and C16 : 0. Additionally, the two strains possessed iron reduction ability and could utilize organics such as benzene and benzoic acid as electron donors to reduce ferric citrate to ferrous iron. Based on the morphological, biochemical, chemotaxonomic and genome data, the two isolated strains represent two novel species of the genus Geothrix, for which the names Geothrix fuzhouensis sp. nov. and Geothrix paludis sp. nov. are proposed. The type strains are SG12T (=GDMCC 1.3407T=JCM 39330T) and SG195T (= GDMCC 1.3308T=JCM 39327T), respectively.


Asunto(s)
Ácidos Grasos , Compuestos Férricos , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Bacterias/genética , Hierro , Fosfolípidos
9.
Artículo en Inglés | MEDLINE | ID: mdl-37185059

RESUMEN

A strictly anaerobic sulfate-reducing strain, designated SG127T, was isolated from paddy soil. SG127T showed the highest 16S rRNA gene sequence similarity to the type strain of Fundidesulfovibrio magnetotacticus (98.2 %). A phylogenetic tree based on 16S rRNA gene sequences indicated that SG127T clustered with members of the genus Fundidesulfovibrio. Growth of SG127T was observed at 20-37 °C (optimum, 30 °C), pH 5.5-9.0 (optimum, 7.0-8.0) and with 0-0.2 % (w/v) NaCl (optimally without NaCl). SG127T contained MK-7 as the only menaquinone and anteiso-C15 : 0, anteiso-C17 : 1ω9c, C18 : 0, iso-C14 : 0, iso-C15 : 0, iso-C16:0, iso-C16 : 1H, iso-C18 : 1H and summed feature nine as the major fatty acids. The genomic DNA G+C content of SG127T was 64.6 %. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between SG127T and the closely related Fundidesulfovibrio magnetotacticus were 78.5% and 23.2 %, respectively, which were lower than the cut-off values (ANI 95-96% and dDDH 70 %) for prokaryotic species delineation. SG127T had desulfoviridin, possessed nitrogen fixation genes (nifHDK) and actively fixed nitrogen according to the acetylene reduction assay. On the basis of these results, strain SG127T represents a novel species of the genus Fundidesulfovibrio, for which the name Fundidesulfovibrio terrae sp. nov. is proposed. The type strain is SG127T (= GDMCC 1.3137T = JCM 35589T).


Asunto(s)
Ácidos Grasos , Suelo , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Sulfatos , Anaerobiosis , Cloruro de Sodio , ADN Bacteriano/genética , Composición de Base , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Bacterias/genética , Fosfolípidos/química
10.
Artículo en Inglés | MEDLINE | ID: mdl-37129938

RESUMEN

Three Gram-positive-staining strains FJAT-49754T, FJAT-49682 and FJAT-49731 were isolated from the citrus rhizosphere soil sample. These strains showed the highest 16S rRNA gene sequence similarity with the type strain of Lederbergia panacisoli (97.8-97.9 %). The 16S rRNA gene sequence similarities between strains FJAT-49754T, FJAT-49682, and FJAT-49731 were 99.9 %. The average nucleotide identity (ANI) values between strains FJAT-49754T, FJAT-49682 and FJAT-49731 were above 96 %, while the ANI values with the members of the genus Lederbergia were below 95 %, which were below the cut-off level for prokaryotic species delineation. The above results suggest that strains FJAT-49754T, FJAT-49682 and FJAT-49731 belong to a novel species of the genus Lederbergia. Growth of strain FJAT-49754T was observed at 10-40 °C (optimum at 30 °C, pH 6.0-10.0 (optimum at pH 8.0), and NaCl tolerance up to 7 % (w/v) (optimum at 1 %). MK-7 was the only menaquinone detected in strain FJAT-49754T, and the main polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids of strain FJAT-49754T were anteiso-C15 : 0, iso-C15 : 0, and C16 : 0. The genomic DNA G+C content of strain FJAT-49754T was 38.7 %. Based on the above results, strain FJAT-49754T represents a novel species of the genus Lederbergia, for which the name Lederbergia citrea sp. nov., is proposed. The type strain is FJAT-49754T (=CCTCC AB 2019211T=LMG 31589T).


Asunto(s)
Ácidos Grasos , Rizosfera , Ácidos Grasos/química , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Hibridación de Ácido Nucleico , Composición de Base , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Ácido Diaminopimélico/química , Análisis de Secuencia de ADN , Pared Celular/química , Peptidoglicano/química
11.
Arch Microbiol ; 205(4): 137, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36961602

RESUMEN

An alkali, salt, and thermo-tolerant strain designated FJAT-45399T was isolated from marine sediment in Fujian Province, China. Strain FJAT-45399T was Gram-stain-positive, rod-shaped, and facultatively aerobic. It shared high 16S rRNA gene sequence similarities with the members of the genus Shouchella. Further, the phylogenetic and phylogenomic analysis also suggested strain FJAT-45399T clustered with the members of the genus Shouchella. Growth of strain FJAT-45399T was observed at 15-55 °C (optimum 45-50 °C), pH 7.0-13.0 (optimum 9.0) and 0-15% (w/v) NaCl (optimum 2%). It contained MK-7 as the menaquinone. The polar lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and an unidentified glycolipid (UGL) and lipid (UL). The major fatty acids (> 10%) were C16:0 (22.8%), iso-C15:0 (21.3%), and anteiso-C15:0 (14.0%). The genomic DNA G + C content was 44.5%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain FJAT-45399T and the most closely related type strain Shouchella clausii DSM 8716T (ANI 94.1% and dDDH 55.4%) were both below the cut-off level for species delineation. Based on the above results, strain FJAT-45399T represents a novel species of the genus Shouchella, for which the name Shouchella tritolerans sp. nov., is proposed. The type strain is FJAT-45399T (= GDMCC 1.3098T = JCM 35613T).


Asunto(s)
Peptidoglicano , Fosfolípidos , Fosfolípidos/química , Filogenia , Composición de Base , ARN Ribosómico 16S/genética , Anaerobiosis , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Ácido Diaminopimélico/química , Peptidoglicano/química , Ácidos Grasos/química , Bacterias/genética , Sedimentos Geológicos/microbiología
12.
Antonie Van Leeuwenhoek ; 116(5): 477-486, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36897496

RESUMEN

An anaerobic, Gram-staining-negative, rod-shaped, Fe(III)-reducing strain, designated SG189T, was isolated from paddy soil in Fujian Province, China. Growth occurred at 20-35 ℃ (optimum 30 ℃), pH 6.5-8.0 (optimum 7.0) and 0-0.2% (w/v) NaCl (optimum 0%). The strain SG189T showed the highest 16S rRNA sequences similarities to the type strains of Geothrix fermentans DSM 14018T (98.9%), "Geothrix terrae" SG184T (99.0%) and "Geothrix alkalitolerans" SG263T (99.3%). ANI and dDDH values between strain SG189T and the most closely related Geothrix species were 86.5-87.1% and 31.5-32.9%, which lower than the cut-off values (ANI 95-96% and dDDH 70%) for prokaryotic species delineation. Further, genome-based phylogenomic trees constructed using 81 core genes (UBCG2) and 120 conserved genes (GTDB) showed that strain SG189T formed a clade with members of the genus Geothrix. The menaquinone was shown to be MK-8, and the major fatty acids were iso-C15:0 and iso-C13:0 3OH. The genomic DNA G + C content was 68.2%. Additionally, we found that strain SG189T possessed ability to reduce ferric iron, and strain SG189T could reduce 10 mM of ferric citrate in 10 days with lactate as the sole electron donor. Based on the observed physiological and biochemical properties, chemotaxonomic characteristics, ANI and dDDH values, SG189T represents a novel species of the genus Geothrix, for which the name Geothrix oryzisoli sp. nov. is proposed. The type strain is SG189T (= GDMCC 1.3408T = JCM 39324T).


Asunto(s)
Compuestos Férricos , Fosfolípidos , Fosfolípidos/química , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Ácidos Grasos/química , Bacterias/genética , Hierro , Filogenia , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana
13.
Artículo en Inglés | MEDLINE | ID: mdl-36920836

RESUMEN

A Gram-stain-positive, rod-shaped and motile strain, designated FJAT-49705T, was isolated from the citrus rhizosphere soil sample. Strain FJAT-49705T grew at 20-40 °C (optimum, 30 °C) and pH 6.0-11.0 (optimum, pH 7.0) with 0-5 % (w/v) NaCl (optimum, 2 %). Strain FJAT-49705T showed high 16S rRNA gene sequence similarity to 'Bacillus dafuensis' FJAT-25496T (99.7 %) and Cytobacillus solani FJAT-18043T (98.0 %). In phylogenetic (based on 16S rRNA gene sequences) and phylogenomic trees (based on 71 bacterial single-copy genes), strain FJAT-49705T clustered with the members of the genus Cytobacillus. MK-7 was the only isoprenoid quinone present. The main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The major fatty acids were anteiso-C15 : 0 and iso-C15 : 0. The genomic DNA G+C content was 36.9 %. The average nucleotide identity (ANI) values between FJAT-49705T and 'B. dafuensis' FJAT-25496T and C. solani FJAT-18043T were below the cut-off level (95-96 %) recommended as the ANI criterion for interspecies identity. Based on the above results, strain FJAT-49705T represents a novel species of the genus Cytobacillus, for which the name Cytobacillus citreus sp. nov. is proposed. The type strain is FJAT-49705T (=CCTCC AB 2019243T= LMG 31580T).


Asunto(s)
Ácidos Grasos , Rizosfera , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Hibridación de Ácido Nucleico , Composición de Base , Microbiología del Suelo , Ácido Diaminopimélico/química , Peptidoglicano/química , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Pared Celular/química , Vitamina K 2/química
14.
Arch Microbiol ; 205(3): 80, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36735086

RESUMEN

A strictly anaerobic sulfate-reducing strain, designated SG60T, was isolated from paddy soil collected in Fujian Province, China. Growth of strain SG60T was observed at 20-37 °C, pH 5.5-10.0 and 0-0.7% (w/v) NaCl. Strain SG60T showed the highest 16S rRNA sequence similarities to the type strains of Fundidesulfovibrio magnetotacticus FSS-1T (97.2%) and Fundidesulfovibrio putealis DSM 16056T (96.4%). Phylogenetic trees based on the16S rRNA sequence and genome-based phylogenomic tree constructed using 120 core genes showed that strain SG60T clustered with members of the genus Fundidesulfovibrio. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain SG60T and the most closely related type strain F. magnetotacticus were 78.2% and 21.6%, respectively. Strain SG60T contained MK-7 as the main respiratory quinone and anteiso-C15:0, anteiso-C17:1 ω9c, iso-C16:0 and iso-C16:1 H as the major fatty acids. Strain SG60T produced desulfoviridin and possessed genes (nifHDK) encoding functions involved in nitrogen fixation. The genomic DNA G + C content was 65.5%. Based on the observed physiological properties, chemotaxonomic characteristics and ANI and dDDH values, strain SG60T represents a novel species of the genus Fundidesulfovibrio, for which the name Fundidesulfovibrio soli sp. nov. is proposed. The type strain is SG60T (= GDMCC 1.3310T = JCM 35676T).


Asunto(s)
Fosfolípidos , Suelo , Fosfolípidos/química , ARN Ribosómico 16S/genética , Filogenia , Sulfatos , ADN Bacteriano/genética , Ácidos Grasos/química , Bacterias/genética , Ubiquinona/química , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana
15.
Curr Microbiol ; 80(2): 79, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36656344

RESUMEN

Two aerobic, Gram-staining-positive, rod-shaped, endospore-forming, thermophilic bacterial strains, designated FJAT-47801T and FJAT-47835, were isolated from the sediment collected from Zhangjiang Estuary Mangrove National Nature Reserve in Fujian Province, China. Growth was observed at 25-55 °C (optimum, 50 °C) and pH 7.0-9.0 (optimum, pH 7.0), with up to 4.0% (w/v) NaCl (optimum, without NaCl). Strains FJAT-47801T and FJAT-47835 showed the highest 16S rRNA gene sequence similarity to Bacillus oleivorans (98.5%). The 16S rRNA gene sequence similarity between FJAT-47801T and FJAT-47835 was 99.9% indicating they were the same species. Phylogenetic (based on 16S rRNA gene sequences) and phylogenomic (based on 120 conserved bacterial single-copy genes) trees showed that strains FJAT-47801T and FJAT-47835 should be affiliated to the genus Bacillus. The of menaquinone of strain FJAT-47801T was MK-7. The major fatty acids of strain FJAT-47801T were iso-C15:0, anteiso-C15:0, iso-C17:0, and C16:0. The major polar lipids strain FJAT-47801T were phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG), and phosphatidylglycerol (PG). The genomic DNA G+C content of strain FJAT-47801T was 39.3%. The average nucleotide identity (84.3%) and the digital DNA-DNA hybridization value (28.1%) between strain FJAT-47801T and B. oleivorans CCTCC AB 2013353T were below the cut-off level for species delineation. Based on the above results, strain FJAT-47801T represents a novel species of the genus Bacillus, for which the name Bacillus litorisediminis sp. nov., is proposed. The type strain is FJAT-47801T (=GDMCC 1.2712T = JCM 34875T).


Asunto(s)
Bacillus , Fosfolípidos , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Cloruro de Sodio/análisis , ADN Bacteriano/genética , ADN Bacteriano/análisis , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Pared Celular/química , Ácido Diaminopimélico/análisis , Ácido Diaminopimélico/química , Peptidoglicano/análisis , Análisis de Secuencia de ADN , Ácidos Grasos/química
16.
Arch Microbiol ; 205(2): 68, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36662302

RESUMEN

A facultative anaerobic nitrogen-fixing bacterium, designated SG131T, was isolated from paddy soil. Strain SG131T showed high 16S rRNA gene sequence similarities with type strains Propionivibrio limicola DSM 6832T (96.9%), Propionivibrio pelophilus asp 66T (96.0%) and Propionivibrio dicarboxylicus DSM 5885T (95.7%). The phylogenetic trees (based on 16S rRNA gene sequences and 120 conserved genes from genomes, respectively) indicated that strain SG131T clustered with members of the genus Propionivibrio. Growth of strain SG131T was observed at 25-40 °C, pH 5.5-10.5 and 0-0.5% (w/v) NaCl. The quinone was Q-7, and the main fatty acids were C16:1 ω6c and/or C16:1 ω7c (25.9%), C16:0 (23.3%), C17:0-cyclo (11.7%), C12:0 (6.0%) and C17:0 (5.9%). The genomic DNA G + C content of strain SG131T was 60.3%. The average nucleotide identity (ANI) values between strain SG131T and its most closely related species P. limicola DSM 6832T, P. pelophilus DSM 12018T and P. dicarboxylicus DSM 5885T were 74.4%, 74.9% and 75.6%, respectively. The digital DNA-DNA hybridization (dDDH) values between strain SG131T and its most closely related species P. limicola DSM 6832T, P. pelophilus DSM 12018T and P. dicarboxylicus DSM 5885T were 19.9%, 20.6% and 20.5%, respectively. All these values were lower than the recommended species delineation thresholds of ANI (95-96%) and dDDH (70%). Strain SG131T possessed core genes (nifHDK) of nitrogen fixation and was confirmed its nitrogen-fixing ability by the ARA method. According to the above-described analysis, strain SG131T represents a novel species of the genus Propionivibrio, for which the name Propionivibrio soli sp. nov. is proposed. The type strain is SG131T (= GDMCC 1.3313T = JCM 35595T).


Asunto(s)
Bacterias , Ácidos Grasos , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Ácidos Grasos/química , Bacterias/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Fosfolípidos/química , Microbiología del Suelo
17.
Curr Microbiol ; 80(2): 68, 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36609736

RESUMEN

A strictly anaerobic nitrogen-fixing strain, designated SG106T, was isolated from rice field. The 16S rRNA gene sequence analysis showed that strain SG106T was closely related to the type strain of Fundidesulfovibrio magnetotacticus (97.3%). In phylogenetic (based on 16S rRNA gene sequences) and phylogenomic (constructed using a concatenated alignment of 117 conserved bacterial single-copy genes with GTDB-Tk) trees, strain SG106T clustered with members of the genus Fundidesulfovibrio. Strain SG106T grew at 20-40 °C and 0-0.4% (w/v) NaCl. Desulfoviridin was found in the strain SG106T. The genomic DNA G + C content of strain SG106T was 66.0%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain SG106T and the closely related F. magnetotacticus were 78.4% and 21.7%, respectively. Genome analysis showed that strain SG106T encodes genes for nitrogen fixation (nifHDK). Acetylene reduction experiments showed that the nitrogenase activity of strain SG106T could reach 224.7 µmol C2H4 g-1 protein h-1. Based on the above results, strain SG106T represents a novel species of the genus Fundidesulfovibrio, for which the name Fundidesulfovibrio agrisoli sp. nov. is proposed. The type strain is SG106T (= GDMCC 1.3136T = JCM 35588T).


Asunto(s)
Ácidos Grasos , Oryza , Oryza/microbiología , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Fosfolípidos
19.
Arch Microbiol ; 204(12): 699, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36357805

RESUMEN

Two Gram-staining-negative strains, designated SG184T and SG263T were isolated from paddy soils in Fujian Province, China. The 16S rRNA gene sequence similarities between strains SG184T, SG263T, and the related type strain Geothrix fermentans DSM 14018T were 98.6% and 99.1%, respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between the two strains and G. fermentans DSM 14018T were below the cut-off level (95% for ANI and 70% for dDDH) recommended as the criterion for interspecies taxon affiliation. Further, phylogenetic and phylogenomic trees indicated that strains SG184T and SG263T clustered with the member of the genus Geothrix. The menaquinone was MK-8, and the main fatty acids were iso-C15:0 and iso-C13:0 3OH. The genomic DNA G + C content of SG184T and SG263T was 68.07% and 68.05%, respectively. Additionally, two strains had iron reduction ability and could reduce ferrihydrite to ferrous iron. Based on the morphological, biochemical, chemotaxonomic and genome analysis, the two isolated strains represent two novel species of the genus Geothrix, for which the names Geothrix terrae sp. nov. and Geothrix alkalitolerans sp. nov. are proposed. The type strains are SG184T (= GDMCC1.3134 T = JCM39321T) and SG263T (= GDMCC 1.3316 T = JCM 39325T), respectively.


Asunto(s)
Microbiología del Suelo , Suelo , ARN Ribosómico 16S/genética , Filogenia , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Ácidos Grasos/análisis , Bacterias/genética , Hierro
20.
Sci Total Environ ; 846: 157496, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35870580

RESUMEN

Mangroves are located at the interface of terrestrial and marine environments, and experience fluctuating conditions, creating a need to better explore the relative role of the bacterial community. Bacillus has been reported to be the dominant group in the mangrove ecosystem and plays a key role in maintaining the biodiversity and function of the mangrove ecosystem. However, studies on bacterial and Bacillus community across four seasons in the mangrove ecosystem are scarce. Here, we employed seasonal large-scale sediment samples collected from the mangrove ecosystem in southeastern China and utilized 16S rRNA gene amplicon sequencing to reveal bacterial and Bacillus community structure changes across seasons. Compared with the whole bacterial community, we found that Bacillus community was greatly affected by season (temperature) rather than site. The key factors, NO3-N and NH4-N showed opposite interaction with superabundant taxa Bacillus taxa (SAT) and three rare Bacillus taxa including high rare taxa (HRT), moderate rare taxa (MRT) and low rare taxa (LRT). Network analysis suggested the co-occurrence of Bacillus community and Bacillus-bacteria, and revealed SAT had closer relationship compared with rare Bacillus taxa. HRT might act crucial response during the temperature decreasing process across seasons. This study fills a gap in addressing the assembly of Bacillus community and their role in maintaining microbial diversity and function in mangrove ecosystem.


Asunto(s)
Bacillus , Ecosistema , Bacillus/genética , Bacterias , Biodiversidad , China , ARN Ribosómico 16S , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...