Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
BMC Genomics ; 25(1): 492, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760719

RESUMEN

Rapeseed (Brassica napus L.), accounts for nearly 16% of vegetable oil, is the world's second produced oilseed. However, pod shattering has caused significant yield loses in rapeseed production, particularly during mechanical harvesting. The GH28 genes can promote pod shattering by changing the structure of the pod cell wall in Arabidopsis. However, the role of the GH28 gene family in rapeseed was largely unknown. Therefore, a genome-wide comprehensive analysis was conducted to classify the role of GH28 gene family on rapeseed pod shattering. A total of 37 BnaGH28 genes in the rapeseed genome were identified. These BnaGH28s can be divided into five groups (Group A-E), based on phylogenetic and synteny analysis. Protein property, gene structure, conserved motif, cis-acting element, and gene expression profile of BnaGH28 genes in the same group were similar. Specially, the expression level of genes in group A-D was gradually decreased, but increased in group E with the development of silique. Among eleven higher expressed genes in group E, two BnaGH28 genes (BnaA07T0199500ZS and BnaC06T0206500ZS) were significantly regulated by IAA or GA treatment. And the significant effects of BnaA07T0199500ZS variation on pod shattering resistance were also demonstrated in present study. These results could open a new window for insight into the role of BnaGH28 genes on pod shattering resistance in rapeseed.


Asunto(s)
Brassica napus , Filogenia , Proteínas de Plantas , Brassica napus/genética , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Genoma de Planta , Sintenía , Perfilación de la Expresión Génica
2.
Front Pharmacol ; 15: 1388206, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720774

RESUMEN

Panax ginseng C. A. Meyer is a dual-purpose plant for medicine and food, its polysaccharide is considered as an immune enhancer. Four polysaccharides, WGP-20-F, WGP-40-F, WGP-60-F and WGP-80-F were obtained from ginseng via water extraction and gradient ethanol precipitation with different molecular weights (Mw) of 1.720 × 106, 1.434 × 106, 4.225 × 104 and 1.520 × 104 Da, respectively. WGP-20-F and WGP-40-F which with higher Mw and a triple-helix structure are glucans composed of 4-ɑ-Glcp, do not show remarkable immunoregulatory effects. WGP-60-F and WGP-80-F are heteropolysaccharides mainly composed of 4-ɑ-Glcp and also contain t-ɑ-Araf, 5-ɑ-Araf and 3,5-ɑ-Araf. They are spherical branched conformations without a triple-helix structure and can effectively increase the index of immune organs, lymphocyte proliferation, activate macrophages to regulate the immune system in mice and further enhance immune functions by improving delayed-type hypersensitivity reaction and antibody response. These results indicated that WGP-60-F and WGP-80-F could be used as potential immune enhancers, and gradient ethanol precipitation can be applied for the preparation of ginseng bioactive polysaccharide.

3.
Ecotoxicol Environ Saf ; 279: 116468, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38776783

RESUMEN

Deoxynivalenol (DON), a type B trichothecene mycotoxin, commonly occurs in cereal grains, and poses significant health risks to humans and animals. Numerous studies reveal its obvious toxic effects on male reproductive performance as well as its ability to transfer from the lactating mother to the suckling offspring through colostrum and milk. The objective of this study was to evaluate the toxic effect of lactational DON exposure on testicular morphology, hormonal levels, inflammation, apoptosis and proliferation of germ cells, tight junction, and sperm quality in male offspring. Sixty-six male offspring mice from lactating dams exposed to DON were euthanized at PND 21 and PND 70 to investigate the reproductive toxicity. Our results indicated that maternal DON exposure had a significant impact on the weight and volume of the testes, caused testicular histopathology, and reduced testosterone levels by downregulating expressions of StAR, CYP11A1, and CYP17A1 in male offspring. We also found that maternal DON exposure led to testicular inflammation in male offspring, which was attributed to increased levels of inflammatory markers, including IL-1ß, IL-6, TNF-α, and IFN-γ. Maternal DON exposure resulted in impaired tight junctions of Sertoli cells in male offspring, as evidenced by decreased expressions of ZO-1, Occludin, and Claudin-3. In addition, maternal DON exposure caused a reduction in the number of Sertoli cells and germ cells, ultimately leading to decreased sperm count and quality in adult male offspring. Collectively, these findings provide compelling evidence that maternal exposure to DON during lactation causes testicular toxicity in both pubertal and adult male offspring.

4.
Cancer Cell Int ; 24(1): 179, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783335

RESUMEN

BACKGROUND: Radiotherapy (RT) has been identified as a vital treatment for esophageal squamous cell carcinoma (ESCC), while the development of radioresistance remains a major obstacle in ESCC management. The aim of this study was to investigate the effect of NIMA-related kinase 2 (NEK2) on radioresistance in ESCC cells and to reveal potential molecular mechanisms. METHODS: Human esophageal epithelial cells (HEEC) and human ESCC cell lines were obtained from the Research Center of the Fourth Hospital of Hebei Medical University (Shijiazhuang, China). Cell Counting Kit-8 (CCK-8) and flow cytometry assays were applied to assess the proliferation ability, cell cycle, apoptosis rates, and ROS production of ESCC cells. The colony-forming assay was used to estimate the effect of NEK2 on radiosensitivity. Autophagy was investigated by western blotting analysis, GFP-mRFP-LC3 fluorescence assay, and transmission electron microscopy (TEM). RESULTS: In the present study, our results showed that NEK2 was associated with radioresistance, cell cycle arrest, apoptosis, ROS production, and survival of ESCC. NEK2 knockdown could significantly inhibit growth while enhancing radiosensitivity and ROS production in ESCC cells. Interestingly, NEK2 knockdown inhibited ESCC cell autophagy and reduced autophagic flux, ultimately reversing NEK2-induced radioresistance. Mechanistically, NEK2 bound to and regulated the stability of tripartite motif-containing protein 21 (TRIM21). The accumulation of NEK2-induced light chain 3 beta 2 (LC3B II) can be reversed by the knockdown of TRIM21. CONCLUSION: These results demonstrated that NEK2 activated autophagy through TRIM21, which may provide a promising therapeutic strategy for elucidating NEK2-mediated radioresistance in ESCC.

5.
Heliyon ; 10(5): e26767, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463829

RESUMEN

Background: Hepatocellular carcinoma (HCC) is a multistep process involving sophisticated genetic, epigenetic, and transcriptional changes. However, studies on microRNA (miRNA)'s regulatory effects of N6-methyladenosine (m6A) modifications on HCC progression are limited. Methods: Cell Counting Kit-8 (CCK-8), clone formation, and Transwell assays were used to investigate changes in cancer cell proliferation, invasion, and migration. RNA m6A levels were verified using methylated RNA immunoprecipitation. Luciferase reporter assay was used to study the potential binding between miRNAs and mRNA. A mouse tumor transplant model was established to study the changes in tumor progression. Results: Follistatin-like 5 (FSTL5) was significantly downregulated in HCC and inhibited its further progression. Additionally, methyltransferase-like 3 (METTL3) reduced FSTL5 mRNA stability in an m6A-YTH domain family 2(YTHDF2)-dependent manner. Functional experiments revealed that METTL3 downregulation inhibited HCC progression by upregulating FSTL5 in vitro and in vivo. Luciferase reporter assay verified that miR-186-5p directly targets METTL3. Additionally, miR-186-5p inhibits the proliferation, migration, and invasion of HCC cells by downregulating METTL3 expression. Conclusions: The miR-186-5p/METTL3/YTHDF2/FSTL5 axis may offer new directions for targeted HCC therapy.

6.
Dent Traumatol ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459650

RESUMEN

BACKGROUND/AIM: Results of studies investigating the association between traumatic brain injury (TBI) and maxillofacial fractures (MFs) have varied considerably. The present study aimed to evaluate the correlation between TBIs and MFs, as well as the impact of age, sex, trauma mechanism, and season on TBIs. MATERIALS AND METHODS: This 12-year retrospective study of 2841 patients used univariate and multivariate logistic regression to assess the association between MFs and other factors impacting TBIs. RESULTS: Among 2841 patients, 1978 TBIs occurred in 829 (29.2%), with intracranial injuries (n = 828) is the most common. Of 829 patients with TBIs, 688 were male and 141 were female, corresponding to a male-to-female ratio of 4.9:1.0. The most common age group was 40-49 years (24.6%). Vehicles (including motor vehicles and electric vehicles) accidents were the primary causes of injuries. Multivariate regression analyses revealed an increased risk for TBIs among males (odds ratio [OR] 0.632, p < 0.001). Patients >40 years of age were at higher risk for TBIs, especially those ≥70 years (OR 3.966, p = 0.001). Vehicle accidents were a high-risk factor for TBIs (OR 6.894, p < 0.001), and winter was the most prevalent season for such injuries (OR 1.559, p = 0.002). Risk for TBI increased by 136.4% in combined midfacial and mandibular fractures (p = 0.016) and by 101.6% in multiple midfacial fractures (p = 0.045). TBIs were less common in single mandibular fractures, notably in single-angle fractures, with a risk of only 0.204-fold. CONCLUSION: TBIs in MFs were significantly correlated with sex, age, aetiology, season and fracture location. Maxillofacial surgeons and emergency physicians must be aware of the possible association between TBIs and MFs to assess and manage this complicated relationship in a timely manner.

7.
Theriogenology ; 220: 1-11, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38457854

RESUMEN

Post-translational modifications (PTMs) are critical for early development in mice because early cleavage-stage embryos are characterized by transcriptional inactivity. Neddylation is an important ubiquitin-like PTM that regulates multiple biophysical processes. However, the exact roles of neddylation in regulating early embryonic development remain largely unknown. In the present study, we found that inhibition of neddylation by specific inhibitor MLN4924 led to severe arrest of early embryonic development. Transcriptomic analysis showed that neddylation inhibition changed the expression of 3959 genes at the 2-cell stage. Importantly, neddylation inhibition blocked zygotic genome activation and maternal mRNA degradation, thus disrupting the maternal-to-zygotic transition. Moreover, inhibition of neddylation induced mitochondrial dysfunction including aberrant mitochondrial distribution, decreased mitochondrial membrane potential, and reduced ATP content. Further analysis showed that inhibition of neddylation resulted in the accumulation of reactive oxygen species and superoxide anion, thereby resulting in oxidative stress and severe DNA damage at the 2-cell stage. Overall, this study demonstrates that neddylation is vital for early embryonic development in mice. Our findings suggest that proper neddylation regulation is essential for the timely inter-stage transition during early embryonic development.


Asunto(s)
Desarrollo Embrionario , Procesamiento Proteico-Postraduccional , Ratones , Animales , Mitocondrias
8.
Adv Sci (Weinh) ; : e2400676, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38460179

RESUMEN

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with a highly immunosuppressive tumor microenvironment and a typical pattern of disturbances in hepatic lipid metabolism. Long non-coding RNAs are shown to play an important role in the regulation of gene expression, but much remains unknown between tumor microenvironment and lipid metabolism as a bridging molecule. Here, long intergenic nonprotein coding RNA 01116 (LINC01116) acts as this molecular which is frequently upregulated in HCC patients and associated with HCC progression in vitro and in vivo is identified. Mechanistically, LINC01116 stabilizes EWS RNA-binding protein 1 (EWSR1) by preventing RAD18 E3 Ubiquitin Protein Ligase (RAD18) -mediated ubiquitination. The enhanced EWSR1 protein upregulates peroxisome proliferator activated receptor alpha (PPARA) and fatty acid binding protein1 (FABP1) expression, a long-chain fatty acid (LCFA) transporter, and thus cancer cells outcompete T cells for LCFAs, especially linoleic acid, for seeding their own growth, leading to T cell malfunction and HCC malignant progression. In a preclinical animal model, the blockade of LINC01116 leads to enhanced efficacy of anti-PD1 treatment accompanied by increased cytotoxic T cell and decreased exhausted T cell infiltration. Collectively, LINC01116 is an immunometabolic lncRNA and the LINC01116-EWSR1-PPARA-FABP1 axis may be targetable for cancer immunotherapy.

9.
BMC Genomics ; 25(1): 232, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438880

RESUMEN

BACKGROUND: The rose is one of the most important ornamental flowers in the world for its aesthetic beauty but can be attacked by many pests such as aphids. Aphid infestation causes tremendous damage on plant tissues leading to harmed petals and leaves. Rose cultivars express different levels of resistance to aphid infestation yet the information remains unclear. Not only that, studies about the transcriptional analysis on defending mechanisms against aphids in rose are limited so far. RESULTS: In this study, the aphid resistance of 20 rose cultivars was evaluated, and they could be sorted into six levels based on the number ratio of aphids. And then, a transcriptome analysis was conducted after aphid infestation in one high resistance (R, Harmonie) and one highly susceptibility (S, Carefree Wonder) rose cultivar. In open environment the majority of rose cultivars had the highest aphid number at May 6th or May 15th in 2020 and the resistance to infestation could be classified into six levels. Differential expression analysis revealed that there were 1,626 upregulated and 767 downregulated genes in the R cultivar and 481 upregulated and 63 downregulated genes in the S cultivar after aphid infestation. Pathway enrichment analysis of the differentially expressed genes revealed that upregulated genes in R and S cultivars were both enriched in defense response, biosynthesis of secondary metabolites (phenylpropanoid, alkaloid, and flavonoid), carbohydrate metabolism (galactose, starch, and sucrose metabolism) and lipid processing (alpha-linolenic acid and linolenic acid metabolism) pathways. In the jasmonic acid metabolic pathway, linoleate 13S-lipoxygenase was specifically upregulated in the R cultivar, while genes encoding other crucial enzymes, allene oxide synthase, allene oxide cyclase, and 12-oxophytodienoate reductase were upregulated in both cultivars. Transcription factor analysis and transcription factor binding search showed that WRKY transcription factors play a pivotal role during aphid infestation in the R cultivar. CONCLUSIONS: Our study indicated the potential roles of jasmonic acid metabolism and WRKY transcription factors during aphid resistance in rose, providing clues for future research.


Asunto(s)
Áfidos , Oxilipinas , Animales , Perfilación de la Expresión Génica , Ciclopentanos , Factores de Transcripción
10.
Inorg Chem ; 63(9): 4078-4085, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38390829

RESUMEN

Providing efficient electronic transport channels has always been a promising strategy to mitigate the recombination of photogenerated charge carriers. In this study, a heterostructure composed of a semiconductor/photoinactive-metal-organic framework (MOF) was constructed to provide innovative channels for electronic transport. Prepared using a previously reported method ( Angew. Chem., Int. Ed. 2016, 55, 15301-15305) with slight modifications to temperature and reaction time, the CuS@HKUST-1 hollow cuboctahedron was synthesized. The CuS@HKUST-1 heterostructure possessed a well-defined cuboctahedral morphology with a uniform size of about 500 nm and a hollow structure with a thickness of around 50 nm. The CuS nanoparticles were uniformly distributed on the HKUST-1 shell. Structural characterization in cooperation with density functional theory (DFT) calculations revealed that CuS can effectively transfer photogenerated electrons to HKUST-1. CuS@HKUST-1 hollow cuboctahedrons were first introduced to the photocatalytic cycloaddition reaction of CO2 with epoxides, demonstrating excellent photocatalytic activity and stability at mild conditions (room temperature, solvent-free, and 1 atm CO2 pressure). The high photocatalytic performance of the CuS@HKUST-1 hollow cuboctahedron could be attributed to (1) the unique hollow cuboctahedron morphology, which provided a large specific surface area (693.1 m2/g) and facilitated the diffusion and transfer of reactants and products; and (2) CuS@HKUST-1 providing electronic transport channels from CuS to HKUST-1, which could enhance the adsorption and activation of CO2. Cu2+ carrying surplus electrons can activate CO2 to CO2-. The charge separation and transfer in the photocatalytic process can also be effectively promoted. This work provides a cost-effective and environmentally friendly approach for CO2 utilization reactions under ambient conditions, addressing the critical issue of rising atmospheric CO2 levels.

11.
Glob Health Res Policy ; 9(1): 8, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38317192

RESUMEN

BACKGROUND: Global health activities (GHAs) reduce health disparities by promoting medical education, professional development, and resource sharing between high- and low- to middle-income countries (HICs and LMICs). Virtual global health activities facilitated continuity and bidirectionality in global health during the COVID-19 pandemic. While virtual engagement holds potential for promoting equity within partnerships, research on equitable access to and interest in virtual global health activities is limited. METHODS: We conducted a cross-sectional, online, mixed-methods survey from January to February 2022 examining access to virtual activities before and during the pandemic across resource settings. Eligible participants were participants or facilitators of global health activities. Closed- and open-ended questions elicited participants' access to and interest in virtual global health engagement. RESULTS: We analyzed 265 surveys from respondents in 45 countries (43.0% LMIC vs. HIC 57.0%). HIC respondents tended to report greater loss of in-person access due to the pandemic at their own institutions (16 of 17 queried GHAs), while LMIC respondents tended to report greater loss of in-person activities at another institution (9 of 17 queried GHAs). Respondents from LMICs were more likely to gain virtual access through another organization for all 17 queried VGHAs. HIC respondents had significantly more access to global health funding through their own organization (p < 0.01) and more flexibility for using funds. There were significant differences and trends between respondent groups in different resource environments in terms of accessibility to and interest in different virtual global health activities, both during and after the pandemic. CONCLUSIONS: Our results highlight the need to examine accessibility to virtual global health activities within partnerships between high- and low- to middle-income countries. While virtual activities may bridge existing gaps in global health education and partnerships, further study on priorities and agenda setting for such initiatives, with special attention to power dynamics and structural barriers, are necessary to ensure meaningful virtual global health engagement moving forward.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Estudios Transversales , Pandemias , Salud Global , Países en Desarrollo
12.
Cancer Lett ; 584: 216620, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218456

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most prevalent and leading causes of cancer-related mortality worldwide. Long non-coding RNAs (lncRNAs) have been demonstrated to play vital roles in cancer development and progression. The lncRNA PWRN1 (PWRN1), acts as a tumor suppressor factor, which is low expressed in some cancers. However, the molecular mechanisms underlying the effects of PWRN1, especially the regulatory relationship with RNA binding protein in HCC remain largely unknown. In the present study, we demonstrated that PWRN1 was significantly down-regulated in HCC and correlated with better prognosis; furthermore, gain-of-function experiments showed that PWRN1 inhibited the proliferation of HCC cells. We further found that PWRN1 up-regulated pyruvate kinase activity and thus hinders the proliferation of HCC in vitro and in vivo. Mechanistically, pyruvate kinase M2 (PKM2) was bound to it and maintained the high activity state of PKM2, thereby hindering PKM2 from entering the nucleus in the form of low-activity dimers, reducing the expression of c-Myc downstream gene LDHA, leading to a decrease in lactate levels, and inhibiting the growth of tumor cells. In addition, PWRN1 was found to inhibit aerobic glycolysis. Finally, TEPP-46, a pyruvate kinase activator, appeared to inhibit HCC proliferation by maintaining tetramer stability and increasing pyruvate kinase activity. Taken together, our results provide new insights into the biology hindering HCC proliferation and indicate that PWRN1 in combination with PKM2 activators might represent a novel therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glucólisis , Neoplasias Hepáticas/patología , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , ARN Largo no Codificante/metabolismo
13.
BMC Med Imaging ; 24(1): 14, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191331

RESUMEN

BACKGROUND: Accurately distinguishing between invasive thymic epithelial tumors (TETs) and anterior mediastinal lymphoma before surgery is crucial for subsequent treatment choices. But currently, the diagnosis of invasive TET is sometimes difficult to distinguish from anterior mediastinal lymphoma. OBJECTIVE: To assess the application of fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography/computer tomography (PET/CT) in the differential diagnosis of TETs and anterior mediastinal lymphomas. METHODS: 18F-FDG PET/CT images of 133 invasive TETs and anterior mediastinal lymphomas patients were retrospectively analyzed. In particular, the tumor's longest diameter and maximum standardized uptake value (SUVmax) were evaluated. The SUVmax and longest diameter values of the two groups were analyzed by using the receiver operating characteristic (ROC) curve to determine the optimal threshold and diagnostic efficiency. RESULTS: Age, myasthenia gravis, SUVmax and tumor longest diameter differed significantly between invasive TETs and anterior mediastinal lymphomas patients. The tumor location, calcification, relationship with adjacent vessels and distant metastasis differed significantly between the groups. The ROC analysis showed an AUC for SUVmax and tumor longest diameter of 0.841 and 0.737. Respectively, the cutoff values with the best diagnostic performance were 9.65 (sensitivity: 77.78%, specificity: 81.97%) and 6.65 (sensitivity: 80.56%, specificity: 62.30%) for SUVmax and tumor longest diameter. The diagnostic model of SUVmax, calcification, relationship with surrounding blood vessels, lymph node metastasis and lung metastasis in the highest AUC of 0.935 (sensitivity: 90.16%, specificity: 88.89%). In addition, we incorporated splenic involvement and metastatic sub-diaphragmatic lymph node into Model 2 as a new predictive model 3 for differential diagnosis and found a significant improvement in the diagnostic performance of Model 3. CONCLUSION: The diagnostic model composed of 18F-FDG PET parameters is improving the differential diagnosis of invasive TETs and anterior mediastinal lymphomas.


Asunto(s)
Calcinosis , Linfoma , Neoplasias del Timo , Humanos , Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Diagnóstico Diferencial , Estudios Retrospectivos , Neoplasias del Timo/diagnóstico por imagen , Linfoma/diagnóstico por imagen , Tomografía de Emisión de Positrones , Computadores
14.
J Hazard Mater ; 465: 133402, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183937

RESUMEN

Soils contaminated by per- and polyfluoroalkyl substances (PFAS) present a significant threat to both ecological and human health. Extensive research efforts are currently underway to develop effective strategies for immobilizing these chemicals in soils. In this study, calcium montmorillonite was modified with cetylpyridinium chloride (CPC-CM) to enhance its electrostatic and hydrophobic interactions with PFAS. CPC-CM exhibited high adsorption for perfluorooctanoate acid (PFOA), perfluorooctane sulfonate (PFOS) and 8:2 fluorotelomer sulfonic acids (8:2 FTSA) across initial concentrations of 50-1000 µg/L, outperforming both the parent CM and L-carnitine modified CM. Soil leaching tests demonstrated the superior immobilization capabilities of the CPC-CM, maintaining an average PFAS leaching rate below 7% after 120-day incubation. In the context of human exposure scenarios, the in vitro bioaccessibility and in vivo bioavailability of PFAS in soils were measured by gastrointestinal extraction and mouse assay. CPC-CM treatment effectively reduced the bioaccessibility (by up to 84%) and bioavailability (by up to 76%) of PFAS in soils. Furthermore, the safety and efficacy of CPC-CM were evaluated using enteric microorganisms of mice. CPC-CM treatment mitigated PFAS-induced changes in the abundance of Bacteroidetes and Firmicutes, thereby reducing PFAS-induced health risks for humans. Overall, CPC-CM synthesized in this study demonstrated superior adsorption performance and application safety, offering a highly promising approach for remediating PFAS-contaminated soil.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Humanos , Animales , Ratones , Arcilla , Cetilpiridinio , Suelo/química , Bentonita , Disponibilidad Biológica
15.
Int J Biol Macromol ; 258(Pt 1): 128293, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000587

RESUMEN

Periodontitis is an oral disease with the highest incidence globally, and plaque control is the key to its treatment. In this study, Microcin C7 was used to treat periodontitis, and a novel injectable temperature-sensitive sustained-release hydrogel was synthesized as an environmentally sensitive carrier for drug delivery. First, modified gelatin was formed from gelatin and glycidyl methacrylate. Then, Microcin C7-laden hydrogel was formed from cross-linking with double bonds between modified gelatin, N-isopropyl acrylamide, and 2-Methacryloyloxyethyl phosphorylcholine through radical polymerization, and the model drug Microcin C7 was loaded by electrostatic adsorption. The hydrogel has good temperature sensitivity, self-healing, and injectable properties. In vitro results showed that the hydrogel could slowly and continuously release Microcin C7 with good biocompatibility and biodegradability, with a remarkable antibacterial effect on Porphyromonas gingivalis. It also confirmed the antibacterial and anti-inflammatory effects of Microcin C7-laden hydrogel in a periodontitis rat model. The results showed that Microcin C7-laden hydrogel is a promising candidate for local drug delivery systems in periodontitis.


Asunto(s)
Bacteriocinas , Hidrogeles , Periodontitis , Ratas , Animales , Hidrogeles/química , Gelatina/química , Antibacterianos/farmacología , Periodontitis/tratamiento farmacológico
16.
ACS Omega ; 8(48): 46261-46266, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38075769

RESUMEN

Alkalinity is crucial in environmental control of ecosystems, wastewater and drinking water treatment, and industrial process control. In this work, we reported a new equation for calculating alkalinity based on the definition of buffer capacity in acid-base buffer solutions and the quantitative relationship between the buffer capacity and pH changes. A "mix and measure" method was developed using this new equation, involving mixing a solution with unknown alkalinity and a standard solution in a specific volume ratio, followed by measuring the pH after mixing. The alkalinity of the solution can be calculated using the newly developed equation. The "mix and measure" method is much more efficient than traditional titration methods for determination of alkalinity because it is restricted by the titration stoichiometric point. Additionally, we demonstrated the rapid determination of the alkalinity for a series of solutions using a portable detection system. This system exhibited precision and accuracy comparable to those of traditional titration methods. The portable system offers great potential for the on-site and real-time determination of alkalinity for industrial control and environmental monitoring purposes.

17.
Trends Analyt Chem ; 1622023 May.
Artículo en Inglés | MEDLINE | ID: mdl-38106545

RESUMEN

Biomarker detection has attracted increasing interest in recent years due to the minimally or non-invasive sampling process. Single entity analysis of biomarkers is expected to provide real-time and accurate biological information for early disease diagnosis and prognosis, which is critical to the effective disease treatment and is also important in personalized medicine. As an innovative single entity analysis method, nanopore sensing is a pioneering single-molecule detection technique that is widely used in analytical bioanalytical fields. In this review, we overview the recent progress of nanopore biomarker detection as new approaches to disease diagnosis. In highlighted studies, nanopore was focusing on detecting biomarkers of different categories of communicable and noncommunicable diseases, such as pandemic Covid-19, AIDS, cancers, neurologic diseases, etc. Various sensitive and selective nanopore detecting strategies for different types of biomarkers are summarized. In addition, the challenges, opportunities, and direction for future development of nanopore-based biomarker sensors are also discussed.

18.
Entropy (Basel) ; 25(12)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38136483

RESUMEN

Due to the asymmetry of quantum errors, phase-shift errors are more likely to occur than qubit-flip errors. Consequently, there is a need to develop asymmetric quantum error-correcting (QEC) codes that can safeguard quantum information transmitted through asymmetric channels. Currently, a significant body of literature has investigated the construction of asymmetric QEC codes. However, the asymmetry of most QEC codes identified in the literature is limited by the dual-containing condition within the Calderbank-Shor-Steane (CSS) framework. This limitation restricts the exploration of their full potential in terms of asymmetry. In order to enhance the asymmetry of asymmetric QEC codes, we utilize entanglement-assisted technology and exploit the algebraic structure of cyclotomic cosets of constacyclic codes to achieve this goal. In this paper, we generalize the decomposition method of the defining set for constacyclic codes and apply it to count the number of pre-shared entangled states in order to construct four new classes of asymmetric entanglement-assisted quantum maximal-distance separable (EAQMDS) codes that satisfy the asymmetric entanglement-assisted quantum Singleton bound. Compared with the codes existing in the literature, the lengths of the constructed EAQMDS codes and the number of pre-shared entangled states are more general, and the codes constructed in this paper have greater asymmetry.

19.
J Mater Chem B ; 11(46): 11064-11072, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37966856

RESUMEN

Nanopore sensing is at the forefront of the technological revolution of the protein research field and has been widely used in molecular diagnosis and molecular dynamics, as well as for various sequencing applications. However, direct protein sensing with biological nanopores is still challenging owing to the large molecular size. Here, we propose an aptamer-assisted nanopore strategy for direct protein sensing and demonstrate its proof-of-concept utilities by experiments with SARS-Cov-2 nucleocapsid protein (NP), the most abundantly expressed viral protein, that is widely used in clinical diagnosis for COVID-19. NP binds with an oligonucleotide-tailed aptamer to form a protein-DNA complex which induces a discriminative two-level pattern of current blockades. We reveal the potential molecular interaction mechanism for the characteristic blockades and identify the salt gradient condition as the dominant factor of the phenomenon. Furthermore, we achieve a high sensitivity of 10 pM for NP detection within one hour and make a preliminary exploration on clinical diagnosis. This work promises a new platform for rapid and label-free protein detection.


Asunto(s)
Aptámeros de Nucleótidos , Nanoporos , Nanotecnología , Simulación de Dinámica Molecular , Cloruro de Sodio
20.
Carbohydr Polym ; 322: 121330, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37839842

RESUMEN

Halenia elliptica D. Don (H. elliptica), which is also known as "heijicao" and "luanehuamao" in China, is recognised as a valuable Tibetan medicinal plant with polysaccharides as the main active ingredient. However, studies on the polysaccharides isolated from H. elliptica are few. A polysaccharide (HEPN-1) with a molecular weight of 10.80 kDa was mainly composed of Gal, Ara, Man, Glc, Rha and Fuc in a molar ratio of 25.56:24.52:4.58:3.37:2.62:1.00. Structural analysis showed that HEPN-1 had a backbone mainly consisting of 4-ß-Galp, 3,6-ß-Galp and 3,4,6-ß-Galp and branched chains that contained two arabinan (R1 and R2) and two heteropolysaccharide (R3 and R4) side chains. The branching degree of HEPN-1 was 0.52. Within the range of doses (75-300 µg/mL), HEPN-1 increased the enzyme activity of SOD, CAT and GSH-Px and decreased the MDA level in H2O2-induced RAW 264.7 cells in a dose-dependent manner. After 6 weeks of intragastric administration, 300 mg/kg HEPN-1 considerably improved the learning and memory deficits in mice and the antioxidant enzyme system. Moreover, the MDA formation in D-gal-induced aging mice was inhibited, possibly partly via the activation of the PI3K/Akt and Nrf2/HO-1 signalling pathways. Therefore, HEPN-1 could serve as a potential natural antioxidant to prevent aging.


Asunto(s)
Antioxidantes , Plantas Medicinales , Humanos , Masculino , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/química , Peróxido de Hidrógeno , Fosfatidilinositol 3-Quinasas , Polisacáridos/química , Plantas Medicinales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...