Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Microbiol ; 24(1): 7, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172646

RESUMEN

BACKGROUND: Hosts, parasites, and microbiota interact with each other, forming a complex ecosystem. Alterations to the microbial structure have been observed in various enteric parasitic infections (e.g. parasitic protists and helminths). Interestingly, some parasites are associated with healthy gut microbiota linked to the intestinal eubiosis state. So the changes in bacteria and metabolites induced by parasite infection may offer benefits to the host, including protection from other parasitesand promotion of intestinal health. The only ciliate known to inhabit the hindgut of grass carp, Balantidium ctenopharyngodoni, does not cause obvious damage to the intestinal mucosa. To date, its impact on intestinal microbiota composition remains unknown. In this study, we investigated the microbial composition in the hindgut of grass carp infected with B. ctenopharyngodoni, as well as the changes of metabolites in intestinal contents resulting from infection. RESULTS: Colonization by B. ctenopharyngodoni was associated with an increase in bacterial diversity, a higher relative abundance of Clostridium, and a lower abundance of Enterobacteriaceae. The family Aeromonadaceae and the genus Citrobacter had significantly lower relative abundance in infected fish. Additionally, grass carp infected with B. ctenopharyngodoni exhibited a significant increase in creatine content in the hindgut. This suggested that the presence of B. ctenopharyngodoni may improve intestinal health through changes in microbiota and metabolites. CONCLUSIONS: We found that grass carp infected with B. ctenopharyngodoni exhibit a healthy microbiota with an increased bacterial diversity. The results suggested that B. ctenopharyngodoni reshaped the composition of hindgut microbiota similarly to other protists with low pathogenicity. The shifts in the microbiota and metabolites during the colonization and proliferation of B. ctenopharyngodoni indicated that it may provide positive effects in the hindgut of grass carp.


Asunto(s)
Balantidium , Carpas , Microbioma Gastrointestinal , Animales , Bacterias/genética , Virulencia
2.
J Fish Dis ; 46(4): 357-367, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36606558

RESUMEN

Ichthyophthiriasis, caused by the parasitic ciliate Ichthyophthirius multifiliis (Ich), is considered one of the most harmful diseases affecting freshwater fish globally. It can cause mass mortalities of fish in intensive farming systems. In such systems, it is thus necessary to detect and quantify the number of Ich in the water so that control measures can be implemented before Ichthyophthiriasis breaks out. In recent years, molecular diagnostic methods have become increasingly important in aquaculture. Real-time quantitative polymerase chain reaction (qPCR) and droplet digital polymerase chain reaction (ddPCR) have become robust assays for detecting pathogens. In this study, a set of specific primers and a TaqMan-minor groove binder probe targeting the small-subunit rDNA (SSU rDNA) of Ich were developed. They were used in qPCR and ddPCR assays to compare the performance of these two different methods in quantitatively detecting Ich. After optimizing the reaction conditions, both qPCR and ddPCR assays were found to have high linearity and quantitative correlations for standard plasmid DNA. When used for the detection of Ich eDNA in water samples, the qPCR assay had a wider detection range, making it a suitable method to screen for the prevalence of Ichthyophthiriasis. However, the ddPCR approach had higher sensitivity, which would help provide advance notice of the disease in complex water environmental samples.


Asunto(s)
Enfermedades de los Peces , Hymenostomatida , Animales , Enfermedades de los Peces/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Agua Dulce , Agua , ADN Ribosómico
3.
Acta Trop ; 221: 106015, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34146536

RESUMEN

Endoparasitic trichodinids are rather rare ciliates. In this study we describe a new species named Trichodina lishuiensis from the bladder of Odorrana schmackeri collected in Zhejiang, China, with the prevalence of 20% (9/45). We identified T. lishuiensis as a new species by morphological comparison and molecular analysis. The ciliates were observed using the dry-silver and protargol staining methods, as well as SEM (scanning electron microscopy). Trichodina lishuiensis is a small species (cell diameter 31.8-43.9 µm), with incompact denticles connection, medium-wide blades and thick rays. We also sequenced a 1712 bp-long fragment of the small subunit ribosomal RNA gene (SSU rRNA). Phylogenetic analyses showed that the new species clustered with Trichodina unionis. The route of transmission of Trichodina species in the urinary bladder remains a mystery. We hypothesize that the transmisison takes place during the amplexus, with eggs and sperm discharged from the cloaca, and that trichodinids 'accompany' the amphibian through its whole life cycle, but further studies are needed to test this hypothesis.


Asunto(s)
Cilióforos , Ranidae/parasitología , Vejiga Urinaria , Animales , China , Cilióforos/clasificación , Filogenia , Vejiga Urinaria/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...