Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 844
Filtrar
1.
BMC Plant Biol ; 24(1): 370, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714932

RESUMEN

BACKGROUND: Nymphaea (waterlily) is known for its rich colors and role as an important aquatic ornamental plant globally. Nymphaea atrans and some hybrids, including N. 'Feitian 2,' are more appealing due to the gradual color change of their petals at different flower developmental stages. The petals of N. 'Feitian 2' gradually change color from light blue-purple to deep rose-red throughout flowering. The mechanism of the phenomenon remains unclear. RESULTS: In this work, flavonoids in the petals of N. 'Feitian 2' at six flowering stages were examined to identify the influence of flavonoid components on flower color changes. Additionally, six cDNA libraries of N. 'Feitian 2' over two blooming stages were developed, and the transcriptome was sequenced to identify the molecular mechanism governing petal color changes. As a result, 18 flavonoid metabolites were identified, including five anthocyanins and 13 flavonols. Anthocyanin accumulation during flower development is the primary driver of petal color change. A total of 12 differentially expressed genes (DEGs) in the flavonoid biosynthesis pathway were uncovered, and these DEGs were significantly positively correlated with anthocyanin accumulation. Six structural genes were ultimately focused on, as their expression levels varied significantly across different flowering stages. Moreover, 104 differentially expressed transcription factors (TFs) were uncovered, and three MYBs associated with flavonoid biosynthesis were screened. The RT-qPCR results were generally aligned with high-throughput sequencing results. CONCLUSIONS: This research offers a foundation to clarify the mechanisms underlying changes in the petal color of waterlilies.


Asunto(s)
Flavonoides , Flores , Regulación de la Expresión Génica de las Plantas , Nymphaea , Transcriptoma , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Flavonoides/biosíntesis , Flavonoides/metabolismo , Nymphaea/genética , Nymphaea/metabolismo , Pigmentación/genética , Antocianinas/biosíntesis , Antocianinas/metabolismo , Perfilación de la Expresión Génica , Color
2.
Nat Plants ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740943

RESUMEN

In plants, the rapid accumulation of proline is a common response to combat abiotic stress1-7. Delta-1-pyrroline-5-carboxylate synthase (P5CS) is a rate-limiting enzyme in proline synthesis, catalysing the initial two-step conversion from glutamate to proline8. Here we determine the first structure of plant P5CS. Our results show that Arabidopsis thaliana P5CS1 (AtP5CS1) and P5CS2 (AtP5CS2) can form enzymatic filaments in a substrate-sensitive manner. The destruction of AtP5CS filaments by mutagenesis leads to a significant reduction in enzymatic activity. Furthermore, separate activity tests on two domains reveal that filament-based substrate channelling is essential for maintaining the high catalytic efficiency of AtP5CS. Our study demonstrates the unique mechanism for the efficient catalysis of AtP5CS, shedding light on the intricate mechanisms underlying plant proline metabolism and stress response.

3.
Phytochemistry ; 223: 114115, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710377

RESUMEN

A total of twenty-two diterpenoid alkaloids, including ten unprecedented ones, namely refractines C-L, were isolated from the roots of Aconitum refractum (Finet et Gagnep.) Hand.-Mazz. Refractine C was the first example of a natural diterpenoid alkaloid wherein C-19 is linked to N position by an oxaziridine ring. Refractine L was a rare glycosidic diterpenoid alkaloid with fructofuranoside. Most of the isolated compounds obtained from a previous study were screened for their anti-inflammatory and myocardial protective activities. The autophagy-inducing effects of some of these compounds on RAW 264.7 cells were evaluated by assessing the expression of microtubule-associated protein 1 light chain 3 (LC3-II/LC3-I). Results revealed that some compounds exerted varying levels of inhibitory effects on the proliferative activity of RAW 264.7 cells.

4.
Clin Oral Investig ; 28(6): 325, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762665

RESUMEN

OBJECTIVE: With the increasing maturity of 3D printing technology, the application of digital guide template in the extraction of impacted teeth has become more sophisticated. However, for maxillary palatal deeply impacted teeth, there still exist significant clinical challenges. This experiment introduces a novel digital guide template and innovatively employs a flapless technique to explore a minimally invasive approach for the extraction of palatal deeply impacted teeth. METHODS: This experiment included 40 patients diagnosed with palatal completely impacted teeth, randomly divided into an experimental group and a control group. The experimental group used the new digital guide template for flapless extraction, while the control group employed the traditional freehand flap technique. RESULTS: The experimental group can significantly reduce the localization time of palatally impacted teeth (P < 0.001), with total surgery times of 18.15 ± 4.88 min and 22.00 ± 7.71 min for the experimental and control groups, respectively (P = 0.067). Although there were no significant statistical differences between the two groups in terms of intraoperative bleeding, adjacent tooth damage, infection, or damage to nearby important anatomical structures, the experimental group showed significant improvements in postoperative pain (P < 0.05), swelling (P < 0.001), and patient satisfaction (P < 0.001) compared to the control group. CONCLUSION: Compared to traditional freehand flap surgery, flapless extraction of palatally impacted teeth guided by digital templates significantly reduces the localization time of impacted teeth and demonstrates notable advantages in some postoperative complications. Future studies with larger sample sizes are needed to substantiate the feasibility of this technique.


Asunto(s)
Estudios de Factibilidad , Extracción Dental , Diente Impactado , Adolescente , Adulto , Femenino , Humanos , Masculino , Maxilar/cirugía , Satisfacción del Paciente , Impresión Tridimensional , Cirugía Asistida por Computador/métodos , Extracción Dental/métodos , Diente Impactado/cirugía , Resultado del Tratamiento
5.
Nat Prod Res ; : 1-7, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771014

RESUMEN

An undescribed dammarane triterpenoid saponin Cypaliuruside F was isolated from the leaves of Cyclocarya paliurus in our preliminary study. The MTT assay, flow cytometry, cell scratch, and DAPI staining were used to detect the antitumor effects of Cypaliuruside F on HepG2 cells. Subsequently, network pharmacology and molecular docking analysis were used to analyse the key targets of Cypaliuruside F against HCC. In addition, a Western blot was performed to determine the effects of Cypaliuruside F on the expression of key proteins in HepG2 cells. The experimental results indicated that the damarane triterpenoid saponin Cypaliuruside F from Cyclocarya paliurus inhibits the proliferation of HepG2 cells by inducing apoptosis and cell cycle arrest. These changes may promote the apoptosis of HepG2 cells by inhibiting the expression of mTOR, STAT3, and Bcl-2 while activating Bax.

6.
J Org Chem ; 89(10): 7286-7294, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38696309

RESUMEN

Here we report a carbene-catalyzed enantio- and diastereoselective [4+2] cycloaddition reaction of cyclobutenones with isatins for the quick and efficient synthesis of spirocyclic δ-lactones bearing a chiral chlorine. A broad range of substrates with various substitution patterns proceed smoothly in this reaction, with the spirooxindole δ-lactone products afforded in generally good to excellent yields and optical purities under mild reaction conditions.

7.
Sci Transl Med ; 16(743): eadk5395, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630847

RESUMEN

Endoscopy is the primary modality for detecting asymptomatic esophageal squamous cell carcinoma (ESCC) and precancerous lesions. Improving detection rate remains challenging. We developed a system based on deep convolutional neural networks (CNNs) for detecting esophageal cancer and precancerous lesions [high-risk esophageal lesions (HrELs)] and validated its efficacy in improving HrEL detection rate in clinical practice (trial registration ChiCTR2100044126 at www.chictr.org.cn). Between April 2021 and March 2022, 3117 patients ≥50 years old were consecutively recruited from Taizhou Hospital, Zhejiang Province, and randomly assigned 1:1 to an experimental group (CNN-assisted endoscopy) or a control group (unassisted endoscopy) based on block randomization. The primary endpoint was the HrEL detection rate. In the intention-to-treat population, the HrEL detection rate [28 of 1556 (1.8%)] was significantly higher in the experimental group than in the control group [14 of 1561 (0.9%), P = 0.029], and the experimental group detection rate was twice that of the control group. Similar findings were observed between the experimental and control groups [28 of 1524 (1.9%) versus 13 of 1534 (0.9%), respectively; P = 0.021]. The system's sensitivity, specificity, and accuracy for detecting HrELs were 89.7, 98.5, and 98.2%, respectively. No adverse events occurred. The proposed system thus improved HrEL detection rate during endoscopy and was safe. Deep learning assistance may enhance early diagnosis and treatment of esophageal cancer and may become a useful tool for esophageal cancer screening.


Asunto(s)
Aprendizaje Profundo , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Lesiones Precancerosas , Humanos , Persona de Mediana Edad , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/epidemiología , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Estudios Prospectivos , Lesiones Precancerosas/patología
8.
Res Sq ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38585731

RESUMEN

During the humoral immune response, B cells undergo rapid metabolic reprogramming with a high demand for nutrients, which are vital to sustain the formation of the germinal centers (GCs). Rag-GTPases sense amino acid availability to modulate the mechanistic target of rapamycin complex 1 (mTORC1) pathway and suppress transcription factor EB (TFEB) and transcription factor enhancer 3 (TFE3), members of the microphthalmia (MiT/TFE) family of HLH-leucine zipper transcription factors. However, how Rag-GTPases coordinate amino acid sensing, mTORC1 activation, and TFEB/TFE3 activity in humoral immunity remains undefined. Here, we show that B cell-intrinsic Rag-GTPases are critical for the development and activation of B cells. RagA/RagB deficient B cells fail to form GCs, produce antibodies, and generate plasmablasts in both T-dependent (TD) and T-independent (TI) humoral immune responses. Deletion of RagA/RagB in GC B cells leads to abnormal dark zone (DZ) to light zone (LZ) ratio and reduced affinity maturation. Mechanistically, the Rag-GTPase complex constrains TFEB/TFE3 activity to prevent mitophagy dysregulation and maintain mitochondrial fitness in B cells, which are independent of canonical mTORC1 activation. TFEB/TFE3 deletion restores B cell development, GC formation in Peyer's patches and TI humoral immunity, but not TD humoral immunity in the absence of Rag-GTPases. Collectively, our data establish Rag-GTPase-TFEB/TFE3 axis as an mTORC1 independent mechanism to coordinating nutrient sensing and mitochondrial metabolism in B cells.

9.
Plant Physiol Biochem ; 210: 108615, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631158

RESUMEN

Magnesium is one of the essential nutrients for plant growth, and plays a pivotal role in plant development and metabolism. Soil magnesium deficiency is evident in citrus production, which ultimately leads to failure of normal plant growth and development, as well as decreased productivity. Citrus is mainly propagated by grafting, so it is necessary to fully understand the different regulatory mechanisms of rootstock and scion response to magnesium deficiency. Here, we characterized the differences in morphological alterations, physiological metabolism and differential gene expression between trifoliate orange rootstocks and lemon scions under normal and magnesium-deficient conditions, revealing the different responses of rootstocks and scions to magnesium deficiency. The transcriptomic data showed that differentially expressed genes were enriched in 14 and 4 metabolic pathways in leaves and roots, respectively, after magnesium deficiency treatment. And the magnesium transport-related genes MHX and MRS2 may respond to magnesium deficiency stress. In addition, magnesium deficiency may affect plant growth by affecting POD, SOD, and CAT enzyme activity, as well as altering the levels of hormones such as IAA, ABA, GA3, JA, and SA, and the expression of related responsive genes. In conclusion, our research suggests that the leaves of lemon grafted onto trifoliate orange were more significantly affected than the roots under magnesium-deficient conditions, further indicating that the metabolic imbalance of scion lemon leaves was more severe.


Asunto(s)
Citrus , Regulación de la Expresión Génica de las Plantas , Magnesio , Plantones , Citrus/metabolismo , Citrus/genética , Plantones/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Magnesio/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Deficiencia de Magnesio/metabolismo , Hojas de la Planta/metabolismo , Estrés Fisiológico , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
10.
Front Microbiol ; 15: 1358612, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638894

RESUMEN

Cystolepiota is a tiny lepiotaceous fungi. During our 3 years fieldwork, we found four new species of Cystolepiota from northeastern China. A phylogenetic study of a combined dataset of ITS+nrLSU+rpb2+tef1-α revealed that Cystolepiota changbaishanensis and Cystolepiota hetieri are sister clades; Cystolepiota hongshiensis belongs to Cystolepiota seminuda complex; Cystolepiota luteosquamulosa formed a clade not closely related with any other; Cystolepiota nivalis and Cystolepiota sp. (HMJAU68235) formed a sister clade. All new species are provided with descriptions, photos of the basidiomata, and colored illustrations of the microstructures. A key for the identification of Cystolepiota species from China is also presented.

11.
Cureus ; 16(3): e57146, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38681314

RESUMEN

Lactic acidosis is a rare but severe complication of B-cell lymphoma, often associated with rapid disease progression and poor prognosis. We present a case of a 60-year-old male admitted with fever, splenomegaly, hemophagocytic tendencies, and lactic acidosis. The patient underwent several dialysis sessions before bone marrow flow cytometry finally confirmed B-cell lymphoma. However, hyperlactatemia persisted and recurred. The case underscores the challenges in diagnosing lymphomas with atypical presentations and emphasizes the critical role of timely bone marrow analysis. Additionally, the paper discusses the association between B-cell lymphoma and lactic acidosis, highlighting the importance of early recognition and intervention.

12.
Biomed Pharmacother ; 174: 116579, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631145

RESUMEN

BACKGROUND AND AIM: Diabetes-associated cognitive impairment (DCI) is a prevalent complication of diabetes. However, there is a lack of viable strategies for preventing and treating DCI. This study aims to explore the efficacy of baicalin (Bai) in attenuating DCI and elucidating the underlying mechanisms. EXPERIMENTAL PROCEDURE: GK rats fed a high-fat and high-glucose diet were utilized to investigate the therapeutic potential of Bai. Cognitive function was assessed using the Morris water maze and novel object recognition tests. To gain insight into the molecular mechanisms underlying Bai's neuro-protective effects, co-cultured BV2/HT22 cells were established under high-glucose (HG) stimulation. The modes of action of Bai were subsequently confirmed in vivo using the DCI model in db/db mice. KEY RESULTS: Bai restored cognitive and spatial memory and attenuated neuron loss, along with reducing expressions of Aß and phosphorylated Tau protein in diabetic GK rats. At the cellular level, Bai exhibited potent antioxidant and anti-inflammatory effects against HG stimulation. These effects were associated with the upregulation of Nrf2 and supressed Keap1 levels. Consistent with these in vitro findings, similar mechanisms were observed in db/db mice. The significant neuroprotective effects of Bai were abolished when co-administered with ATRA, a Nrf2 blocker, in db/db mice, confirming that KEAP1-Nrf2 signaling pathway was responsible for the observed effect. CONCLUSIONS AND IMPLICATIONS: Bai demonstrates a great therapeutic potential for attenuating DCI. The antioxidant defense and anti-inflammatory actions of Bai were mediated through the KEAP1-Nrf2 axis. These findings advance our understanding of potential treatment approaches for DCI, a common complication associated with diabetes.


Asunto(s)
Disfunción Cognitiva , Flavonoides , Factor 2 Relacionado con NF-E2 , Fármacos Neuroprotectores , Transducción de Señal , Regulación hacia Arriba , Animales , Masculino , Ratones , Ratas , Antioxidantes/farmacología , Línea Celular , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Flavonoides/farmacología , Flavonoides/uso terapéutico , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
13.
Bioorg Chem ; 146: 107297, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503027

RESUMEN

In our previous study, a screening of a variety of lycotonine-type diterpenoid alkaloids were screened for cardiotonic activity revealed that lycoctonine had moderate cardiac effect. In this study, a series of structurally diverse of lycoctonine were synthesized by modifying on B-ring, D-ring, E-ring, F-ring, N-atom or salt formation on lycoctonine skeleton. We evaluated the cardiotonic activity of the derivatives by isolated frog heart, aiming to identify some compounds with significantly enhanced cardiac effects, among which compound 27 with a N-isobutyl group emerged as the most promising cardiotonic candidate. Furthermore, the cardiotonic mechanism of compound 27 was preliminarily investigated. The result suggested that the cardiotonic effect of compound 27 is related to calcium channels. Patch clamp technique confirmed that the compound 27 had inhibitory effects on CaV1.2 and CaV3.2, with inhibition rates of 78.52 % ± 2.26 % and 79.05 % ± 1.59 % at the concentration of 50 µM, respectively. Subsequently, the protective effect of 27 on H9c2 cells injury induced by cobalt chloride was tested. In addition, compound 27 can alleviate CoCl2-induced myocardial injury by alleviating calcium overload. These findings suggest that compound 27 was a new structural derived from lycoctonine, which may serve as a new lead compound for the treatment of heart failure.


Asunto(s)
Aconitina/análogos & derivados , Alcaloides , Cardiotónicos , Cardiotónicos/farmacología , Aconitina/química , Alcaloides/farmacología , Alcaloides/química , Canales de Calcio , Calcio
14.
J Hazard Mater ; 469: 134091, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38513440

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are widespread in soils and threaten human health seriously. The immobilized microorganisms (IM) technique is an effective and environmentally sound approach for remediating PAH-contaminated soil. However, the knowledge of the remedial efficiency and the way IM operates using natural organic materials as carriers in complex soil environments is limited. In this study, we loaded a functional microbial consortium on corn straw to analyze the effect of IM on PAH concentration and explore the potential remediation mechanisms of IM in PAH-contaminated soil. The findings revealed that the removal rate of total PAHs in the soil was 88.25% with the application of IM after 20 days, which was 39.25% higher than the control treatment, suggesting that IM could more easily degrade PAHs in soil. The findings from high-throughput sequencing and quantitative PCR revealed that the addition of IM altered the bacterial community structure and key components of the bacterial network, enhanced cooperative relationships among bacteria, and increased the abundance of bacteria and functional gene copies such as nidA and nahAc in the soil, ultimately facilitating the degradation of PAHs in the soil. This study enhances our understanding of the potential applications of IM for the treatment of PAH-contaminated soil.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo/química , Zea mays/metabolismo , Consorcios Microbianos , Biodegradación Ambiental , Contaminantes del Suelo/metabolismo , Microbiología del Suelo , Bacterias/genética , Bacterias/metabolismo
15.
Sci Total Environ ; 924: 171662, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38485009

RESUMEN

In polycyclic aromatic hydrocarbon (PAH) contaminated soils, bioremediation is superior to other strategies owing to its low cost and environmental friendliness. However, dissolved organic matter (DOM) and indigenous bacterial communities can affect the efficiency of PAH-degrading bacteria (PDB). This study found that exogenous PDB (C1) including the genera Acinetobacter, Stenotrophomonas, and Comamonas, decreased the bacterial diversity of Alfisol, Ultisol, Inceptisol, and Mollisol, and DOM enhanced the diffusion of PDB and the bioavailability of PAH. In addition, bacteria preferred to ingest low molecular weight DOM fractions, and the abundances of lipid-like and protein-like substances decreased by 0.12-3.03 % and 1.73-4.60 %. The DOM fractions had a more marked influence on the indigenous bacteria than the exogenous PDB, and PDB dominated the PAH biodegradation process in the soils. More COO functional groups promoted the utilization of higher molecular weight-related homologue fractions by bacteria, and lower molecular weight fractions carrying more CH2 functional groups declined during biodegradation. This study investigated the variations in bacterial communities during biodegradation and revealed the effects of DOM fractions on biodegradation in PAH-contaminated soils at the molecular level. These results will promote the development of bioremediation strategies for organics-contaminated soil and provide guidance for prediction models of soil biodegradation kinetics.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Biodegradación Ambiental , Suelo , Materia Orgánica Disuelta , Contaminantes del Suelo/análisis , Bacterias/metabolismo , Microbiología del Suelo
16.
Plant Physiol ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431523

RESUMEN

Terpene trilactones (TTLs) are important secondary metabolites in ginkgo (Ginkgo biloba); however, their biosynthesis gene regulatory network remains unclear. Here, we isolated a G. biloba ethylene response factors 4 (GbERF4) involved in TTL synthesis. Overexpression of GbERF4 in tobacco (Nicotiana tabacum) significantly increased terpenoid content and upregulated the expression of key enzyme genes (3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS), 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), 1-deoxy-D-xylulose-5-phosphate synthase (DXS), acetyl-CoA C-acetyltransferase (AACT), and geranylgeranyl diphosphate synthase (GGPPS)) in the terpenoid pathway in tobacco, suggesting that GbERF4 functions in regulating the synthesis of terpenoids. The expression pattern analysis and previous microRNA (miRNA) sequencing showed that gb-miR160 negatively regulates the biosynthesis of TTLs. Transgenic experiments showed that overexpression of gb-miR160 could significantly inhibit the accumulation of terpenoids in tobacco. Targeted inhibition and dual-luciferase reporter assays confirmed that gb-miR160 targets and negatively regulates GbERF4. Transient overexpression of GbERF4 increased TTL content in G. biloba, and further transcriptome analysis revealed that DXS, HMGS, CYPs, and transcription factor genes were upregulated. In addition, yeast one-hybrid and dual-luciferase reporter assays showed that GbERF4 could bind to the promoters of the HMGS1, AACT1, DXS1, levopimaradiene synthase (LPS2), and GGPPS2 genes in the TTL biosynthesis pathway and activate their expression. In summary, this study investigated the molecular mechanism of the gb-miR160-GbERF4 regulatory module in regulating the synthesis of TTLs. It provides information for enriching the understanding of the regulatory network of TTL biosynthesis and offers important gene resources for the genetic improvement of G. biloba with high contents of TTLs.

17.
Environ Pollut ; 346: 123657, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428787

RESUMEN

Straw amendment significantly enhances mercury (Hg) methylation and subsequent methylmercury (MeHg) bioaccumulation in Hg-contaminated paddy fields by releasing dissolved organic matter (DOM). This study comprehensively investigates the regulatory mechanisms of DOM and its different molecular weights derived from sulfur-rich rape straw (RaDOM) and composted rape straw (CRaDOM) applied in the rice-filling stage on soil MeHg production and subsequent bioaccumulation in rice grains. The results indicated that the amendment of RaDOM and CRaDOM significantly reduced soil MeHg content by 42.40-62.42%. This reduction can be attributed to several factors, including the suppression of Hg-methylating bacteria in soil, the supply of sulfate from RaDOM and CRaDOM, and the increase in the humification, molecular weight, and humic-like fractions of soil DOM. Additionally, adding RaDOM increased the MeHg bioaccumulation factor in roots by 27.55% while inhibiting MeHg transportation by 12.24% and ultimately reducing MeHg content in grains by 21.24% compared to the control group. Similarly, CRaDOM enhanced MeHg accumulation by 25.19%, suppressed MeHg transportation by 39.65%, and reduced MeHg levels in the grains by 27.94%. The assimilation of sulfate derived from RaDOM and CRaDOM into glutathione may be responsible for the increased retention of MeHg in the roots. Over the three days, there was a significant decrease in soil MeHg content as the molecular weight of RaDOM increased; conversely, altering the molecular weight of CRaDOM demonstrated an inverse trend. However, this pattern was not observed after 12 days. Applying sulfur-rich rape DOM can help mitigate MeHg accumulation in paddy fields by regulating the quality of soil DOM, sulfur cycling, and Hg-methylating bacteria.


Asunto(s)
Brassica rapa , Mercurio , Compuestos de Metilmercurio , Oryza , Contaminantes del Suelo , Mercurio/análisis , Suelo , Materia Orgánica Disuelta , Contaminantes del Suelo/análisis , Sulfatos , Metilación
18.
Zookeys ; 1193: 111-123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481425

RESUMEN

A taxonomic revision and redescription of the genus Eurymesosa Breuning, 1938 are presented, including a key to species. Three of the five currently accepted species are considered valid: Eurymesosaventralis (Pascoe, 1865), Eurymesosaallapsa (Pascoe, 1866) and Eurymesosaziranzhiyi Yamasako & Lin, 2016. Three junior synonyms are proposed for E.ventralis: Eurymesosaalbostictica Breuning, 1962, syn. nov., Eurymesosaaffinis Breuning, 1970, syn. nov., and Eurymesosamultinigromaculata Breuning, 1974, syn. nov. Additionally, E.allapsa (Pascoe, 1866) is resurrected from synonyms of E.ventralis. Females of E.allapsa and E.ziranzhiyi Yamasako & Lin, 2016 are described for the first time.

19.
Plant Genome ; : e20440, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462710

RESUMEN

4-Coumarate-CoA ligase (4CL) gene plays vital roles in plant growth and development, especially the regulation of lignin metabolism and flavonoid synthesis. To investigate the potential function of 4CL in the lignin biosynthesis of Ginkgo biloba, this study identified two 4CL genes, Gb4CL1 and Gb4CL2, from G. biloba genome. Based on the phylogenetic tree analysis, Gb4CL1 and Gb4CL2 protein were classified into Class I, which has been confirmed to be involved in lignin biosynthesis. Therefore, it can be inferred that these two genes may also participate in lignin metabolism. The tissue-specific expression patterns of these two genes revealed that Gb4CL1 was highly expressed in microstrobilus, whereas Gb4CL2 was abundant in immature leaves. The onion transient expression assay indicated that Gb4CL1 was predominantly localized in the nucleus, indicating its potential involvement in nuclear functions, while Gb4CL2 was observed in the cell wall, suggesting its role in cell wall-related processes. Phytohormone response analysis revealed that the expression of both genes was upregulated in response to indole acetic acid, while methyl jasmonate suppressed it, gibberellin exhibited opposite effects on these genes. Furthermore, Gb4CL1 and Gb4CL2 expressed in all tissues containing lignin that showed a positive correlation with lignin content. Thus, these findings suggest that Gb4CL1 and Gb4CL2 are likely involved in lignin biosynthesis. Gb4CL1 and Gb4CL2 target proteins were successfully induced in Escherichia coli BL21 with molecular weights of 85.5 and 89.2 kDa, proving the integrity of target proteins. Our findings provided a basis for revealing that Gb4CL participated in lignin synthesis in G. biloba.

20.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38463988

RESUMEN

During the humoral immune response, B cells undergo rapid metabolic reprogramming with a high demand for nutrients, which are vital to sustain the formation of the germinal centers (GCs). Rag-GTPases sense amino acid availability to modulate the mechanistic target of rapamycin complex 1 (mTORC1) pathway and suppress transcription factor EB (TFEB) and transcription factor enhancer 3 (TFE3), members of the microphthalmia (MiT/TFE) family of HLH-leucine zipper transcription factors. However, how Rag-GTPases coordinate amino acid sensing, mTORC1 activation, and TFEB/TFE3 activity in humoral immunity remains undefined. Here, we show that B cell-intrinsic Rag-GTPases are critical for the development and activation of B cells. RagA/RagB deficient B cells fail to form GCs, produce antibodies, and generate plasmablasts in both T-dependent (TD) and T-independent (TI) humoral immune responses. Deletion of RagA/RagB in GC B cells leads to abnormal dark zone (DZ) to light zone (LZ) ratio and reduced affinity maturation. Mechanistically, the Rag-GTPase complex constrains TFEB/TFE3 activity to prevent mitophagy dysregulation and maintain mitochondrial fitness in B cells, which are independent of canonical mTORC1 activation. TFEB/TFE3 deletion restores B cell development, GC formation in Peyer's patches and TI humoral immunity, but not TD humoral immunity in the absence of Rag-GTPases. Collectively, our data establish Rag-GTPase-TFEB/TFE3 pathway as an mTORC1 independent mechanism to coordinating nutrient sensing and mitochondrial metabolism in B cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...