Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2401476, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602334

RESUMEN

While significant efforts in surface engineering have been devoted to the conversion process of lead iodide (PbI2) into perovskite and top surface engineering of perovskite layer with remarkable progress, the exploration of residual PbI2 clusters and the hidden bottom surface on perovskite layer have been limited. In this work, a new strategy involving 1-butyl-3-methylimidazolium acetate (BMIMAc) ionic liquid (IL) additives is developed and it is found that both the cations and the anions in ILs can interact with the perovskite components, thereby regulating the crystallization process and diminishing the residue PbI2 clusters as well as filling vacancies. The introduction of BMIMAc ILs induces the formation of a uniform porous PbI2 film, facilitating better penetration of the second-step organic salt and fostering a more extensive interaction between PbI2 and the organic salt. Surprisingly, the oversized residual PbI2 clusters at the bottom surface of the perovskite layer completely diminish. In addition, advanced depth analysis techniques including depth-resolved grazing-incidence wide-angle X-ray scattering (GIWAXS) and bottom thinning technology are employed for a comprehensive understanding of the reduction in residual PbI2. Leveraging effective PbI2 management and regulation of the perovskite crystallization process, the champion devices achieve a power conversion efficiency (PCE) of 25.06% with long-term stability.

2.
Nanomaterials (Basel) ; 14(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38668147

RESUMEN

Due to current issues of energy-level mismatch and low transport efficiency in commonly used electron transport layers (ETLs), such as TiO2 and SnO2, finding a more effective method to passivate the ETL and perovskite interface has become an urgent matter. In this work, we integrated a new material, the ionic liquid (IL) hexylammonium acetate (HAAc), into the SnO2/perovskite interface to improve performance via the improvement of perovskite quality formed by the two-step method. The IL anions fill oxygen vacancy defects in SnO2, while the IL cations interact chemically with Pb2+ within the perovskite structure, reducing defects and optimizing the morphology of the perovskite film such that the energy levels of the ETL and perovskite become better matched. Consequently, the decrease in non-radiative recombination promotes enhanced electron transport efficiency. Utilizing HAAc, we successfully regulated the morphology and defect states of the perovskite layer, resulting in devices surpassing 24% efficiency. This research breakthrough not only introduces a novel material but also propels the utilization of ILs in enhancing the performance of perovskite photovoltaic systems using two-step synthesis.

3.
Adv Sci (Weinh) ; 11(18): e2307476, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38445968

RESUMEN

Förster resonance energy transfer (FRET) has demonstrated its potential to enhance the light energy utilization ratio of perovskite solar cells by interacting with metal-organic frameworks (MOFs) and perovskite layers. However, comprehensive investigations into how MOF design and synthesis impact FRET in perovskite systems are scarce. In this work, nanoscale HIAM-type Zr-MOF (HIAM-4023, HIAM-4024, and HIAM-4025) is meticulously tailored to evaluate FRET's existence and its influence on the perovskite photoactive layer. Through precise adjustments of amino groups and acceptor units in the organic linker, HIAM-MOFs are synthesized with the same topology, but distinct photoluminescence (PL) emission properties. Significant FRET is observed between HIAM-4023/HIAM-4024 and the perovskite, confirmed by spectral overlap, fluorescence lifetime decay, and calculated distances between HIAM-4023/HIAM-4024 and the perovskite. Conversely, the spectral overlap between the PL emission of HIAM-4025 and the perovskite's absorption spectrum is relatively minimal, impeding the energy transfer from HIAM-4025 to the perovskite. Therefore, the HIAM-4023/HIAM-4024-assisted perovskite devices exhibit enhanced EQE via FRET processes, whereas the HIAM-4025 demonstrates comparable EQE to the pristine. Ultimately, the HIAM-4023-assisted perovskite device achieves an enhanced power conversion efficiency (PCE) of 24.22% compared with pristine devices (PCE of 22.06%) and remarkable long-term stability under ambient conditions and continuous light illumination.

4.
Small Methods ; 8(2): e2300210, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37231562

RESUMEN

Ionic liquids (ILs) are extensively utilized for the manipulation of crystallization kinetics of perovskite, morphology optimization, and defect passivation for the fabrication of highly efficient and stable devices. However, comparing ILs with different chemical structures and selecting the appropriate ILs from the many types available to enhance perovskite device performance remains a challenge. In this study, a range of ILs containing different sizes of anions are introduced as additives for assisting in film formation in perovskite photovoltaics. Specifically, ILs with various sizes significantly affects the strength of chemical interaction between ILs and perovskite composition, inducing varying degrees of conversion of lead iodide to perovskite as well as the formation of perovskite films with markedly disparate grain sizes and morphology. Theoretical calculations in conjunction with experimental measurements revealed that small-sized anion can more effectively reduce defect density by filling halide vacancies within perovskite bulk materials, resulting in suppression of charge-carrier recombination, an extended photoluminescence lifetime, and significantly improved device performance. Boosted by ILs with appropriate size, the champion power conversion efficiency of 24.09% for the ILs-treated device is obtained, and the unencapsulated devices retain 89.3% of its original efficiency under ambient conditions for 2000 h.

5.
Adv Sci (Weinh) ; 11(4): e2305572, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37943024

RESUMEN

Metal-organic frameworks (MOFs) have been investigated recently in perovskite photovoltaics owing to their potential to boost optoelectronic performance and device stability. However, the impact of variations in the MOF side chain on perovskite characteristics and the mechanism of MOF/perovskite film formation remains unclear. In this study, three nanoscale thiol-functionalized UiO-66-type Zr-based MOFs (UiO-66-(SH)2 , UiO-66-MSA, and UiO-66-DMSA) are systematically employed and examined in perovskite solar cells (PSCs). Among these MOFs, UiO-66-(SH)2 , with its rigid organic ligands, exhibited a strong interaction with perovskite materials with more efficient suppression of perovskite vacancy defects. More importantly, A detailed and in-depth discussion is provided on the formation mechanism of UiO-66-(SH)2 -assisted perovskite film upon in situ GIWAXS performed during the annealing process. The incorporation of UiO-66-(SH)2 additives substantially facilitates the conversion of PbI2 into the perovskite phase, prolongs the duration of stage I, and induces a delayed phase transformation pathway. Consequently, the UiO-66-(SH)2 -assisted device demonstrates reduced defect density and superior optoelectronic properties with optimized power conversion efficiency of 24.09% and enhanced long-term stability under ambient environment and continuous light illumination conditions. This study acts as a helpful design guide for desired MOF/perovskite structures, enabling further advancements in MOF/perovskite optoelectronic devices.

6.
Front Chem ; 11: 1341935, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274895

RESUMEN

The remarkable optoelectronic properties of organometal halide perovskite solar cells have captivated significant attention in the energy sector. Nevertheless, the instability of 3D perovskites, despite their extensive study and attainment of high-power conversion efficiency, remains a substantial obstacle in advancing PSCs for practical applications and eventual commercialization. To tackle this issue, researchers have devised mixed-dimensional perovskite structures combining 1D and 3D components. This innovative approach entails incorporating stable 1D perovskites into 3D perovskite matrices, yielding a significant improvement in long-term stability against various challenges, including moisture, continuous illumination, and thermal stress. Notably, the incorporation of 1D perovskite yields a multitude of advantages. Firstly, it efficiently passivates defects, thereby improving the overall device quality. Secondly, it retards ion migration, a pivotal factor in degradation, thus further bolstering stability. Lastly, the inclusion of 1D perovskite facilitates charge transport, ultimately resulting in an elevated device efficiency. In this succinct review, we thoroughly encapsulate the recent progress in PSCs utilizing 1D/3D mixed-dimensional architectures. These advancements encompass both stacked bilayer configurations of 1D/3D structures and mixed monolayer structures of 1D/3D. Additionally, we tackle critical challenges that must be surmounted and offer insights into the prospects for further advancements in this domain.

7.
Molecules ; 27(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36364394

RESUMEN

Mixed-dimensional perovskite engineering has been demonstrated as a simple and useful approach to achieving highly efficient and more-durable perovskite solar cells (PSCs), which have attracted increasing research interests worldwide. In this work, 1D/3D mixed-dimensional perovskite has been successfully obtained by introducing DMAI via a two-step deposition method. The additive DMA+ can facilitate the crystalline growth and form 1D DMAPbI3 at grain boundaries of 3D perovskite, leading to improved morphology, longer charge carrier lifetime, and remarkably reduced bulk trap density for perovskite films. Meanwhile, the presence of low-dimension perovskite is able to prevent the intrusion of moisture, resulting in enhanced long-term stability. As a result, the PSCs incorporated with 1D DMAPbI3 exhibited a first-class power conversion efficiency (PCE) of 21.43% and maintained 85% of their initial efficiency after storage under ambient conditions with ~45% RH for 1000 h.

8.
Foods ; 11(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35741987

RESUMEN

The distinct dark-red skin of Huaniu apples renders them attractive to customers. However, the mechanism that leads to the development of the color of the fruit is unclear. In this study, we found that compared with red Fuji (a bright-red apple cultivar), Huaniu apples had higher contents of (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-gallocatechin gallate (GCG), and procyanidins (PCs) B2 and C1 in the peel, which implies that the polymerization of the flavanols and PCs may be correlated with the dark-red skin of the fruit. Using EC as a substrate, we purified an enzyme from Huaniu peel. We performed protein sequencing and discovered that the enzyme was a polyphenol oxidase (PPO). The molecular weight of the enzyme was approximately 140 kDa, which we estimated by native-PAGE and SDS-PAGE, while it was 61 kDa by urea-SDS-PAGE, from which we discovered that the PPO was a dimer. We observed the lowest Km value for catechol (0.60 mM), and the best substrate was 4-methylcatechol, with a Vmax of 526.32 U mg-1 protein. EC is a suitable natural substrate, with a Km value of 1.17 mM, and 55.27% of the Vmax/Km of 4-methylcatechol. When we used EC as a substrate, the optimum temperature and pH of the PPO were 25 °C and 5.0, respectively. In summary, we purified a dimeric PPO from Huaniu apples that showed high activity to EC, which might catalyze the polymerization of flavanols and PCs and lead to the dark-red color development of the fruit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...