Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Materials (Basel) ; 17(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38730945

RESUMEN

Environmental pollution and energy crises have garnered global attention. The substantial discharge of organic waste into water bodies has led to profound environmental contamination. Photocatalytic fuel cells (PFCs) enabling the simultaneous removal of refractory contaminants and recovery of the chemical energy contained in organic pollutants provides a potential strategy to solve environmental issues and the energy crisis. This review will discuss the fundamentals, working principle, and configuration development of PFCs and photocatalytic microbial fuel cells (PMFCs). We particularly focus on the strategies for improving the wastewater treatment performance of PFCs/PMFCs in terms of coupled advanced oxidation processes, the rational design of high-efficiency electrodes, and the strengthening of the mass transfer process. The significant potential of PFCs/PMFCs in various fields is further discussed in detail. This review is intended to provide some guidance for the better implementation and widespread adoption of PFC wastewater treatment technologies.

2.
BMC Plant Biol ; 24(1): 457, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38797823

RESUMEN

BACKGROUND: Cotton is globally important crop. Verticillium wilt (VW), caused by Verticillium dahliae, is the most destructive disease in cotton, reducing yield and fiber quality by over 50% of cotton acreage. Breeding resistant cotton cultivars has proven to be an efficient strategy for improving the resistance of cotton to V. dahliae. However, the lack of understanding of the genetic basis of VW resistance may hinder the progress in deploying elite cultivars with proven resistance. RESULTS: We planted the VW-resistant Gossypium hirsutum cultivar Zhongzhimian No.2 (ZZM2) in an artificial greenhouse and disease nursery. ZZM2 cotton was subsequently subjected to transcriptome sequencing after Vd991 inoculation (6, 12, 24, 48, and 72 h post-inoculation). Several differentially expressed genes (DEGs) were identified in response to V. dahliae infection, mainly involved in resistance processes, such as flavonoid and terpenoid quinone biosynthesis, plant hormone signaling, MAPK signaling, phenylpropanoid biosynthesis, and pyruvate metabolism. Compared to the susceptible cultivar Junmian No.1 (J1), oxidoreductase activity and reactive oxygen species (ROS) production were significantly increased in ZZM2. Furthermore, gene silencing of cytochrome c oxidase subunit 1 (COX1), which is involved in the oxidation-reduction process in ZZM2, compromised its resistance to V. dahliae, suggesting that COX1 contributes to VW resistance in ZZM2. CONCLUSIONS: Our data demonstrate that the G. hirsutum cultivar ZZM2 responds to V. dahliae inoculation through resistance-related processes, especially the oxidation-reduction process. This enhances our understanding of the mechanisms regulating the ZZM2 defense against VW.


Asunto(s)
Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Gossypium , Enfermedades de las Plantas , Gossypium/genética , Gossypium/microbiología , Gossypium/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Ascomicetos/fisiología , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Verticillium
3.
BMC Public Health ; 24(1): 1401, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38797861

RESUMEN

BACKGROUND: The vaccination status of post-stroke patients, who are at high risk of severe outcomes from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is a significant concern, yet it remains unclear. We aimed to explore the vaccination status, factors associated with vaccine hesitancy, and adverse effects after vaccination among post-stroke patients. METHODS: This multi-center observational study enrolled hospitalized post-stroke patients from six Chinese hospitals (Oct 1, 2020 - Mar 31, 2021), examining vaccine uptake and self-reported reasons for vaccine hesitancy, utilizing logistic regression to investigate risk factors for vaccine hesitancy, and recording any adverse reactions post-vaccination. RESULTS: Of the total 710 post-stroke patients included in the study, 430 (60.6%) had completed the recommended full-3 dose SARS-CoV-2 vaccination, with 176 (24.8%) remaining unvaccinated. The most common reasons for vaccine hesitancy were concerns about vaccine side effects (41.5%) and impaired mobility (33.9%). Logistic regression identified advanced age (aOR = 1.97, 95%CI: 1.36-2.85, P = 0.001), lower Barthel Index score (aOR = 0.88, 95%CI: 0.82-0.93, P = 0.018), higher Modified Rankin Scale score (aOR = 1.85, 95%CI: 1.32-2.56, P = 0.004), and poorer usual activity level of EuroQol 5-Dimension (aOR = 2.82, 95%CI: 1.51-5.28, P = 0.001) as independent risk factors for vaccine hesitancy. Approximately 14.8% reported minor adverse reactions, mainly pain at the injection site. CONCLUSION: We found that post-stroke patients have insufficient SARS-CoV-2 vaccination rates, with key risk factors for vaccine hesitancy including concerns about side effects, advanced age, and functional impairments. No severe adverse reactions were observed among the vaccinated population.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Accidente Cerebrovascular , Vacilación a la Vacunación , Humanos , Masculino , Femenino , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Persona de Mediana Edad , Estudios Transversales , Anciano , COVID-19/prevención & control , COVID-19/psicología , Vacilación a la Vacunación/psicología , Vacilación a la Vacunación/estadística & datos numéricos , Accidente Cerebrovascular/psicología , China , Factores de Riesgo , SARS-CoV-2
4.
J Phys Chem B ; 128(18): 4354-4366, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38683784

RESUMEN

G protein-coupled receptors (GPCRs) are a major gateway to cellular signaling, which respond to ligands binding at extracellular sites through allosteric conformational changes that modulate their interactions with G proteins and arrestins at intracellular sites. High-resolution structures in different ligand states, together with spectroscopic studies and molecular dynamics simulations, have revealed a rich conformational landscape of GPCRs. However, their supramolecular structure and spatiotemporal distribution is also thought to play a significant role in receptor activation and signaling bias within the native cell membrane environment. Here, we applied single-molecule fluorescence techniques, including single-particle tracking, single-molecule photobleaching, and fluorescence correlation spectroscopy, to characterize the diffusion and oligomerization behavior of the muscarinic M1 receptor (M1R) in live cells. Control samples included the monomeric protein CD86 and fixed cells, and experiments performed in the presence of different orthosteric M1R ligands and of several compounds known to change the fluidity and organization of the lipid bilayer. M1 receptors exhibit Brownian diffusion characterized by three diffusion constants: confined/immobile (∼0.01 µm2/s), slow (∼0.04 µm2/s), and fast (∼0.14 µm2/s), whose populations were found to be modulated by both orthosteric ligands and membrane disruptors. The lipid raft disruptor C6 ceramide led to significant changes for CD86, while the diffusion of M1R remained unchanged, indicating that M1 receptors do not partition in lipid rafts. The extent of receptor oligomerization was found to be promoted by increasing the level of expression and the binding of orthosteric ligands; in particular, the agonist carbachol elicited a large increase in the fraction of M1R oligomers. This study provides new insights into the balance between conformational and environmental factors that define the movement and oligomerization states of GPCRs in live cells under close-to-native conditions.


Asunto(s)
Receptor Muscarínico M1 , Ligandos , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M1/química , Difusión , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Multimerización de Proteína/efectos de los fármacos , Animales , Espectrometría de Fluorescencia , Simulación de Dinámica Molecular , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo
5.
Theor Appl Genet ; 137(4): 87, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512468

RESUMEN

KEY MESSAGE: A total of 38 putative additive QTLs and 55 pairwise putative epistatic QTLs for tiller-related traits were reported, and the candidate genes underlying qMtn-KJ-5D, a novel major and stable QTL for maximum tiller number, were characterized. Tiller-related traits play an important role in determining the yield potential of wheat. Therefore, it is important to elucidate the genetic basis for tiller number when attempting to use genetic improvement as a tool for enhancing wheat yields. In this study, a quantitative trait locus (QTL) analysis of three tiller-related traits was performed on the recombinant inbred lines (RILs) of a mapping population, referred to as KJ-RILs, that was derived from a cross between the Kenong 9204 (KN9204) and Jing 411 (J411) lines. A total of 38 putative additive QTLs and 55 pairwise putative epistatic QTLs for spike number per plant (SNPP), maximum tiller number (MTN), and ear-bearing tiller rate (EBTR) were detected in eight different environments. Among these QTLs with additive effects, three major and stable QTLs were first documented herein. Almost all but two pairwise epistatic QTLs showed minor interaction effects accounting for no more than 3.0% of the phenotypic variance. The genetic effects of two colocated major and stable QTLs, i.e., qSnpp-KJ-5D.1 and qMtn-KJ-5D, for yield-related traits were characterized. The breeding selection effect of the beneficial allele for the two QTLs was characterized, and its genetic effects on yield-related traits were evaluated. The candidate genes underlying qMtn-KJ-5D were predicted based on multi-omics data, and TraesKN5D01HG00080 was identified as a likely candidate gene. Overall, our results will help elucidate the genetic architecture of tiller-related traits and can be used to develop novel wheat varieties with high yields.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Mapeo Cromosómico/métodos , Ligamiento Genético , Fitomejoramiento , Fenotipo
6.
Bioact Mater ; 36: 48-61, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38434148

RESUMEN

Photosynthetic bacteria (PSB) has shown significant potential as a drug or drug delivery system owing to their photothermal capabilities and antioxidant properties. Nevertheless, the actualization of their potential is impeded by inherent constraints, including their considerable size, heightened immunogenicity and compromised biosafety. Conquering these obstacles and pursuing more effective solutions remains a top priority. Similar to extracellular vesicles, bacterial outer membrane vesicles (OMVs) have demonstrated a great potential in biomedical applications. OMVs from PSB encapsulate a rich array of bioactive constituents, including proteins, nucleic acids, and lipids inherited from their parent cells. Consequently, they emerge as a promising and practical alternative. Unfortunately, OMVs have suffered from low yield and inconsistent particle sizes. In response, bacteria-derived nanovesicles (BNVs), created through controlled extrusion, adeptly overcome the challenges associated with OMVs. However, the differences, both in composition and subsequent biological effects, between OMVs and BNVs remain enigmatic. In a groundbreaking endeavor, our study meticulously cultivates PSB-derived OMVs and BNVs, dissecting their nuances. Despite minimal differences in morphology and size between PSB-derived OMVs and BNVs, the latter contains a higher concentration of active ingredients and metabolites. Particularly noteworthy is the elevated levels of lysophosphatidylcholine (LPC) found in BNVs, known for its ability to enhance cell proliferation and initiate downstream signaling pathways that promote angiogenesis and epithelialization. Importantly, our results indicate that BNVs can accelerate wound closure more effectively by orchestrating a harmonious balance of cell proliferation and migration within NIH-3T3 cells, while also activating the EGFR/AKT/PI3K pathway. In contrast, OMVs have a pronounced aptitude in anti-cancer efforts, driving macrophages toward the M1 phenotype and promoting the release of inflammatory cytokines. Thus, our findings not only provide a promising methodological framework but also establish a definitive criterion for discerning the optimal application of OMVs and BNVs in addressing a wide range of medical conditions.

7.
Br J Cancer ; 130(5): 755-768, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38228715

RESUMEN

BACKGROUND: Radiotherapy is a critical treatment modality for nasopharyngeal carcinoma (NPC). However, the mechanisms underlying radiation resistance and tumour recurrence in NPC remain incompletely understood. METHODS: Oxidised lipids were assessed through targeted metabolomics. Ferroptosis levels were evaluated using cell viability, clonogenic survival, lipid peroxidation, and transmission electron microscopy. We investigated the biological functions of glutathione S-transferase mu 3 (GSTM3) in cell lines and xenograft tumours. Co-immunoprecipitation, mass spectrometry, and immunofluorescence were conducted to explore the molecular mechanisms involving GSTM3. Immunohistochemistry was performed to investigate the clinical characteristics of GSTM3. RESULTS: Ionising radiation (IR) promoted lipid peroxidation and induced ferroptosis in NPC cells. GSTM3 was upregulated following IR exposure and correlated with IR-induced ferroptosis, enhancing NPC radiosensitivity in vitro and in vivo. Mechanistically, GSTM3 stabilised ubiquitin-specific peptidase 14 (USP14), thereby inhibiting the ubiquitination and subsequent degradation of fatty acid synthase (FASN). Additionally, GSTM3 interacted with glutathione peroxidase 4 (GPX4) and suppressed GPX4 expression. Combining IR treatment with ferroptosis inducers synergistically improved NPC radiosensitivity and suppressed tumour growth. Notably, a decrease in GSTM3 abundance predicted tumour relapse and poor prognosis. CONCLUSIONS: Our findings elucidate the pivotal role of GSTM3 in IR-induced ferroptosis, offering strategies for the treatment of radiation-resistant or recurrent NPC.


Asunto(s)
Ferroptosis , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/radioterapia , Recurrencia Local de Neoplasia , Tolerancia a Radiación , Ácido Graso Sintasas , Neoplasias Nasofaríngeas/patología , Glutatión Transferasa , Ubiquitina Tiolesterasa , Acido Graso Sintasa Tipo I
8.
J Exp Bot ; 75(7): 1967-1981, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38069503

RESUMEN

Within a spike of wheat, the central spikelets usually generate three to four fertile florets, while the basal spikelets generate zero to one fertile floret. The physiological and transcriptional mechanism behind the difference in fertility between the basal and central spikelets is unclear. This study reports a high temporal resolution investigation of transcriptomes, number and morphology of floret primordia, and physiological traits. The W6.5-W7.5 stage was regarded as the boundary to distinguish between fertile and abortive floret primordia; those floret primordia reaching the W6.5-W7.5 stage during the differentiation phase (3-9 d after terminal spikelet stage) usually developed into fertile florets in the next dimorphism phase (12-27 d after terminal spikelet stage), whereas the others aborted. The central spikelets had a greater number of fertile florets than the basal spikelets, which was associated with more floret primordia reaching the W6.5-W7.5 stage. Physiological and transcriptional results demonstrated that the central spikelets had a higher sucrose content and lower abscisic acid (ABA) and jasmonic acid (JA) accumulation than the basal spikelets due to down-regulation of genes involved in ABA and JA synthesis. Collectively, we propose a model in which ABA and JA accumulation is induced under limiting sucrose availability (basal spikelet) through the up-regulation of genes involved in ABA and JA synthesis; this leads to floret primordia in the basal spikelets failing to reach their fertile potential (W6.5-W7.5 stage) during the differentiation phase and then aborting. This fertility repression model may also regulate spikelet fertility in other cereal crops and potentially provides genetic resources to improve spikelet fertility.


Asunto(s)
Ácido Abscísico , Ciclopentanos , Flores , Oxilipinas , Sulfonamidas , Flores/genética , Triticum/genética , Sacarosa , Fertilidad/genética
9.
Anal Chem ; 96(1): 204-211, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38148285

RESUMEN

There are many flow behaviors in solid tumors, including intravascular, bloodstream, and interstitial convection. Studies have shown that tumor interstitial fluid (TIF) is an important part of tumor microenvironment regulation and affects drug delivery and metabolism between tumor cells. Magnetic resonance imaging (MRI) is suitable for detecting the flow rates of liquids in tissues. Clinical phase contrast PC-MRI technology has been designed to observe the blood flow in large vessels such as arteries and veins; however, it is not sensitive enough to deal with slow flow velocity. Our previously developed vertical plane echo PC-MRI technology, the Velocity Mapping sequence, improved the signal-to-noise ratio (SNR) for measuring slow interstitial fluid rate. In this study, this sequence was used to determine the TIF flow rate in MDA-MB-231 human breast tumor cells used in BALB/c nude male mice. Two different sizes of contrast agents were intravenously injected, and the relationship between their distribution and the TIF flow rate was studied for the first time. Combining the results of clinical scanning showed that small-molecule DTPA-Gd (diethylenetriaminepentaacetic acid-gadolinium) was distributed immediately around the tumor margin after the injection. This distribution was positively correlated to the high flow rate area of the TIF before administration. In contrast, nanoparticles NaGdF4-PEG (polyethylene glycol) entered the tumor and reached their peak at 3 h. Drug distribution was negatively correlated with the high-flow-rate region of the TIF. Investigation of the TIF velocity can help better understand the fluid behavior in tumors and its role in drug delivery.


Asunto(s)
Neoplasias de la Mama , Líquido Extracelular , Ratones , Animales , Masculino , Humanos , Líquido Extracelular/metabolismo , Imagen por Resonancia Magnética/métodos , Sistemas de Liberación de Medicamentos , Ácido Pentético , Neoplasias de la Mama/metabolismo , Medios de Contraste/metabolismo , Gadolinio DTPA/metabolismo , Microambiente Tumoral
10.
J Transl Med ; 21(1): 800, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950236

RESUMEN

BACKGROUND: Accumulating evidence supports the significant role of human microbiome in development and therapeutic response of tumors. Circulating microbial DNA is non-invasive and could show a general view of the microbiome of host, making it a promising biomarker for cancers. However, whether circulating microbiome is associated with prognosis of non-small cell lung cancer (NSCLC) and its potential mechanisms on tumor immune microenvironment still remains unknown. METHODS: The blood microbiome data and matching tumor RNA-seq data of TCGA NSCLC patients were obtained from Poore's study and UCSC Xena. Univariate and multivariate Cox regression analysis were used to identify circulating microbiome signatures associated with overall survival (OS) and construct the circulating microbial abundance prognostic scoring (MAPS) model. Nomograms integrating clinical characteristics and circulating MAPS scores were established to predict OS rate of NSCLC patients. Joint analysis of blood microbiome data and matching tumor RNA-seq data was used to deciphered the tumor microenvironment landscape of patients in circulating MAPS-high and MAPS-low groups. Finally, the predictive value of circulating MAPS on the efficacy of immunotherapy and chemotherapy were assessed. RESULTS: A circulating MAPS prediction model consisting of 14 circulating microbes was constructed and had an independent prognostic value for NSCLC. The integration of circulating MAPS into nomograms may improve the prognosis predictive power. Joint analysis revealed potential interactions between prognostic circulating microbiome and tumor immune microenvironment. Especially, intratumor plasma cells and humoral immune response were enriched in circulating MAPS-low group, while intratumor CD4 + Th2 cells and proliferative related pathways were enriched in MAPS-high group. Finally, drug sensitivity analysis indicated the potential of circulating MAPS as a predictor of chemotherapy efficacy. CONCLUSION: A circulating MAPS prediction model was constructed successfully and showed great prognostic value for NSCLC. Our study provides new insights of interactions between microbes, tumors and immunity, and may further contribute to precision medicine for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Microbiota , Humanos , Microambiente Tumoral , Pronóstico
11.
J Cell Physiol ; 238(11): 2570-2585, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37842875

RESUMEN

Integrated action modes of regulated cell death (RCD) in lung adenocarcinoma (LUAD) have not been comprehensively dissected. Here, we adopted 15 RCD modes, including 1350 related genes, and established RCD signature scores. We found that LUAD patients with high RCD scores had a significantly worse prognosis in all four different cohorts (TCGA, KM-plotter, GSE31210, and GSE30219). Our nomogram established based on the RCD score and clinical characteristics performed well in both the discovery and validation sets. There was a close correlation between the RCD scores and LUAD molecular subtypes identified by unsupervised consensus clustering. Furthermore, we profiled the tumor microenvironment via deconvolution and found significant differences in immune activity, transcription factor activity and molecular pathway enrichment between the RCD-high and RCD-low groups. More importantly, we revealed that the regulation of antigen presentation is the crucial mechanism underlying RCD. In addition, higher RCD scores predict poorer sensitivity to multiple therapeutic drugs, which indicates that RCD scores may serve as a promising predictor of chemotherapy and immunotherapy outcomes. In summary, this work is the first to reveal the internal links between RCD modes, LUAD, and cancer immunity and highlights the necessity of RCD scores in personalizing treatment plans.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Muerte Celular Regulada , Humanos , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Presentación de Antígeno , Análisis por Conglomerados , Microambiente Tumoral/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética
12.
Appl Microbiol Biotechnol ; 107(23): 7347-7364, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37747613

RESUMEN

Plant roots and rhizosphere soils assemble diverse microbial communities, and these root-associated microbiomes profoundly influence host development. Modern wheat has given rise to numerous cultivars for its wide range of ecological adaptations and commercial uses. Variations in nitrogen uptake by different wheat cultivars are widely observed in production practices. However, little is known about the composition and structure of the root-associated microbiota in different wheat cultivars, and it is not sure whether root-associated microbial communities are relevant in host nitrogen absorption. Therefore, there is an urgent need for systematic assessment of root-associated microbial communities and their association with host nitrogen absorption in field-grown wheat. Here, we investigated the root-associated microbial community composition, structure, and keystone taxa in wheat cultivars with different nitrogen absorption characteristics at different stages and their relationships with edaphic variables and host nitrogen uptake. Our results indicated that cultivar nitrogen absorption characteristics strongly interacted with bacterial and archaeal communities in the roots and edaphic physicochemical factors. The impact of host cultivar identity, developmental stage, and spatial niche on bacterial and archaeal community structure and network complexity increased progressively from rhizosphere soils to roots. The root microbial community had a significant direct effect on plant nitrogen absorption, while plant nitrogen absorption and soil temperature also significantly influenced root microbial community structure. The cultivar with higher nitrogen absorption at the jointing stage tended to cooperate with root microbial community to facilitate their own nitrogen absorption. Our work provides important information for further wheat microbiome manipulation to influence host nitrogen absorption. KEY POINTS: • Wheat cultivar and developmental stage affected microbiome structure and network. • The root microbial community strongly interacted with plant nitrogen absorption. • High nitrogen absorption cultivar tended to cooperate with root microbiome.


Asunto(s)
Microbiota , Triticum , Triticum/microbiología , Nitrógeno , Raíces de Plantas/microbiología , Microbiología del Suelo , Suelo/química , Bacterias , Archaea , Rizosfera
13.
Anal Chem ; 95(28): 10572-10579, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37403032

RESUMEN

Fluorine-19 (19F) MRI (19F-MRI) is a promising method for quantifying biomedical research and clinical applications without background interference. Nevertheless, dependency on high-field MRI systems limits the applicability of 19F-MRI. Low-field MRI systems are more common than high-field MRI systems. Hence, developing 19F-MRI at low-field MRI devices can promote the 19F-MRI translation in medical diagnosis. The detection sensitivity of fluorine agents is critical in 19F-MRI. Reduction of the 19F spin-lattice relaxation time (T1) enables an improved detection sensitivity while requiring ultrashort echo time (UTE) imaging methods to reduce the negative spin-spin relaxation (T2) decay effect. However, conventional UTE sequences require hardware with high performance. Herein, we introduce the k-space scaling imaging (KSSI) MRI sequence that accomplishes sampling k-space with variable scales to implement hardware-friendly UTE 19F-MRI compatible with low-field MRI systems. We implemented experiments with swine bone, a perfluorooctyl bromide (PFOB) phantom, and one tumor-bearing mouse on two self-customized low-field MRI systems. The swine bone imaging validated the ultrashort TE of KSSI. Under high concentrations of manganese ferrite, a high signal-to-noise ratio was shown in the imaging of a fluorine atom concentration of 658 mM, which indicated high-sensitivity detection of KSSI. Moreover, the KSSI sequence exhibited a 7.1 times signal-to-noise ratio of spin echo sequence on the PFOB phantom imaging with a fluorine atom concentration of 3.29 M. Additionally, the various concentrations of the PFOB phantom imaging revealed quantifiable capacity. Finally, the 1H/19F imaging was implemented with KSSI on one tumor-bearing mouse. This method provides the potential for clinical translation of fluorine probes at low-field MRI systems.


Asunto(s)
Flúor , Fluorocarburos , Animales , Ratones , Porcinos , Imagen por Resonancia Magnética/métodos
14.
Nanoscale Adv ; 5(15): 3905-3913, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37496627

RESUMEN

Experimental and clinical studies have reported phenomena of long-range fluid flow in interstitial space. However, its behaviours and functions are yet to be addressed. The imaging of the interstitial stream in vivo can clarify its transportation route and allow further understanding of physiological mechanisms and clinical relevance. Here to illustrate the route of the interstitial stream leading to the kidney, we design and synthesize a magnetic resonance imaging (MRI) contrast agent PAA-g-(DTPA-gadolinium). This MRI agent has a high longitudinal relaxivity for higher MRI contrast and large size to avoid leakage across the interstitial space. Using dynamic contrast enhanced MRI, histochemical staining, and trace element analysis of gadolinium, we track the nano-scale PAA-g-(DTPA-gadolinium) transported in the interstitial stream. The agent can be applied for a wide range of imaging and analysis of tissues and organs, thereby enabling advances in the fields of physiology, pathology, and pharmacology.

15.
Int Immunopharmacol ; 121: 110469, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37311357

RESUMEN

BACKGROUND: While immune checkpoint inhibitors (ICIs) demonstrate remarkable clinical responses, only a small subset of patients obtains benefits. Genes linked to the tumor immune system are confirmed to be critical for the treatment of ICIs, and their polymorphisms can contribute to ICI efficacy. Here, we examined the potential of immunogenetic variations to predict the efficacy and survival of the PD-1/PD-L1 blockade. METHODS: Cancerous patients receiving PD-1/PD-L1 blockade were recruited and followed up. Pivotal genes related to tumor-immunity were filtered through a protein-protein interaction network and the degree algorithm in Cytoscape. Finally, 39 genetic variants were genotyped through multiplex genotyping assays. Association analyses between variants and ICI efficacy and progression-free survival (PFS) were performed. RESULTS: Overall, 318 patients were ultimately enrolled. Hence, three immunogenetic variants were identified as predictors of PD-1/PD-L1 blockade response. Mutant alleles from ATG7 rs7625881, CD274 rs2297136, and TLR4 rs1927911 were all at increased risk of tumor progression following ICI therapy (OR: 1.475, 1.641, 1.462, respectively; P value: 0.028, 0.017, 0.027, respectively). Significant immunogenetic variants also attained similar trends in the PD-1 blockade, lung cancer, or lung cancer using PD-1 blockade subgroups. Furthermore, the mutant genotypes of CD274 rs2297136 (GG as the reference: HR: 0.50 (95%CI: 0.29-0.88), P value: 0.015) and TLR4 rs1927911 (AA as the reference: HR: 0.65 (95%CI: 0.47-0.91), P value: 0.012) indicated poorer PFS and were both independent prognostic factors. CONCLUSION: Immunogenetic polymorphisms, including ATG7 rs7625881, CD274 rs2297136, and TLR4 rs1927911, were first identified as potential predictors of response to PD-1/PD-L1 blockade in tumor patients.


Asunto(s)
Antineoplásicos Inmunológicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Receptor de Muerte Celular Programada 1 , Antígeno B7-H1 , Inmunogenética , Receptor Toll-Like 4 , Antineoplásicos Inmunológicos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico
16.
IEEE J Biomed Health Inform ; 27(6): 2876-2885, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37030744

RESUMEN

Transcranial photobiomodulation (tPBM) is an emerging non-invasive light-based neuromodulation technique that shows promising potential for improving working memory (WM) performance in older adults. However, the neurophysiological mechanisms associated with tPBM that underlie the improvement of WM and the persistence of such improvement have not been investigated. Sixty-one healthy older adults were recruited to receive a baseline sham stimulation, followed by one-week active tPBM (12 min daily, 1064-nm laser, 250 mW/cm2) and three-week follow-ups. N-back WM task was conducted on post-stimulation of the baseline, the first (Day 1) and seventh (Day 7) days of the active treatment, and at the follow-ups. During the task, functional near-infrared spectroscopy (fNIRS) imaging was employed to record the cortical hemodynamic changes. Brain activations during the active and follow-up sessions were compared with the baseline to determine how tPBM had changed cortical hemodynamic activity and how long these changes persisted. We found that tPBM stimulation on Day 1 induced significantly decreased activation in the right hemisphere during the 3-back. The decreased activation expanded from only the right hemisphere on Day 1 to both hemispheres on Day 7. The decreased activation persisted for one week in the right supramarginal gyrus and the left angular gyrus and two weeks in the left somatosensory association cortex. These activation changes were accompanied by significantly improved task accuracy during the N-back. These findings provide important evidence for understanding neural mechanisms underlying cognitive enhancement after tPBM.


Asunto(s)
Memoria a Corto Plazo , Corteza Prefrontal , Humanos , Anciano , Memoria a Corto Plazo/fisiología , Corteza Prefrontal/fisiología , Hemodinámica , Diagnóstico por Imagen
17.
Dis Markers ; 2023: 6729717, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845017

RESUMEN

Kinetochore-localized astrin- (SPAG5-) binding protein (KNSTRN) is mainly involved in mitosis. Somatic mutations in KNSTRN are known to lead to the occurrence and development of certain tumors. However, the role of KNSTRN in the tumor immune microenvironment (TIME) as a tumor prognostic biomarker and potential therapeutic target has not been clarified. Accordingly, in this study, we aimed to investigate the role of KNSTRN in the TIME. mRNA expression, cancer patient prognosis, and correlations between KNSTRN expression and immune component infiltration were analyzed using Genotype-Tissue Expression, The Cancer Genome Atlas, Cancer Cell Line Encyclopedia, Human Protein Atlas, ImmuCellAI, TIMER2.0, and KM-Plotter. The Genomics of Drug Sensitivity in Cancer database was used to evaluate the relationship between KNSTRN expression and the half maximal inhibitory concentration (IC50) of several anticancer drugs, and gene set variation analysis was performed. Data were visualized using R version 4.1.1. KNSTRN expression was upregulated in the majority of cancers and was associated with a worse prognosis. Additionally, KNSTRN expression was highly correlated with the infiltration of multiple immune components in the TIME and was related to a poor prognosis in tumor patients receiving immunotherapy. KNSTRN expression was also positively correlated with the IC50 of various anticancer drugs. In conclusion, KNSTRN may be a significant prognostic biomarker and promising target for oncotherapy in numerous cancers.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Proteínas de Ciclo Celular , Inmunoterapia , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Pronóstico , Microambiente Tumoral
18.
ACS Appl Mater Interfaces ; 15(6): 7725-7734, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36731033

RESUMEN

Oxygen plays an important role in diabetic chronic wound healing by regulating various life activities such as cell proliferation, migration, and angiogenesis. Therefore, oxygen-delivering systems have drawn much attention and evolved continuously. Here, we propose that an active Chlorella vulgaris (Cv)-loaded separable microneedle (MN) can be used to control oxygen delivery, which then promotes wound healing. The Cv-loaded microneedles (CvMN) consist of a polyvinyl acetate (PVA) substrate and gelatin methacryloyl (GelMA) tips with encapsulated Cv. Once CvMN is applied to diabetic wound, the PVA basal layer is rapidly dissolved in a short time, while the noncytotoxic and biocompatible GelMA tips remain in the skin. By taking advantage of the photosynthesis of Cv, oxygen would be continuously produced in a green way and released from CvMN in a controlled manner. Both in vitro and in vivo results showed that CvMN could promote cell proliferation, migration, and angiogenesis and enhance wound healing in diabetic mice effectively. The remarkable therapeutic effect is mainly attributed to the continuous generation of dissolved oxygen in CvMN and the presence of antioxidant vitamins, γ-linolenic acid, and linoleic acid in Cv. Thus, CvMN provides a promising strategy for diabetic wound healing with more possibility of clinical transformations.


Asunto(s)
Chlorella vulgaris , Diabetes Mellitus Experimental , Ratones , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Oxígeno , Cicatrización de Heridas , Fotosíntesis , Hidrogeles/uso terapéutico
19.
AoB Plants ; 15(2): plac061, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36751366

RESUMEN

The rapid increases of the global population and climate change pose major challenges to a sustainable production of food to meet consumer demands. Process-based models (PBMs) have long been used in agricultural crop production for predicting yield and understanding the environmental regulation of plant physiological processes and its consequences for crop growth and development. In recent years, with the increasing use of sensor and communication technologies for data acquisition in agriculture, machine learning (ML) has become a popular tool in yield prediction (especially on a large scale) and phenotyping. Both PBMs and ML are frequently used in studies on major challenges in crop production and each has its own advantages and drawbacks. We propose to combine PBMs and ML given their intrinsic complementarity, to develop knowledge- and data-driven modelling (KDDM) with high prediction accuracy as well as good interpretability. Parallel, serial and modular structures are three main modes can be adopted to develop KDDM for agricultural applications. The KDDM approach helps to simplify model parameterization by making use of sensor data and improves the accuracy of yield prediction. Furthermore, the KDDM approach has great potential to expand the boundary of current crop models to allow upscaling towards a farm, regional or global level and downscaling to the gene-to-cell level. The KDDM approach is a promising way of combining simulation models in agriculture with the fast developments in data science while mechanisms of many genetic and physiological processes are still under investigation, especially at the nexus of increasing food production, mitigating climate change and achieving sustainability.

20.
Sci Total Environ ; 857(Pt 2): 159466, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36257446

RESUMEN

As treatments for mainstream pollutants in coal-fired power plants have been established, the control of non-conventional pollutants, such as SO3 and HCl, is gradually gaining attention. In this study, combined SO3 and HCl removal is proposed based on SO3 removal by absorber injection. However, it is challenging to selectively absorb SO3 and HCl from SO2-rich atmospheres. Therefore, Ca(OH)2 was modified via ball milling and doping with CuO for the combined removal of SO3 and HCl. The results showed that ball milling reduced the particle and grain sizes of Ca(OH)2, which increased the active sites of Ca(OH)2 and prolonged reaction time. After modification by ball milling, SO3 absorption per mg of Ca(OH)2 increased by 40 %. However, HCl removal efficiency was difficult to improve by modifying Ca(OH)2 using only ball milling under SO3 and SO2 atmospheres. Therefore, the dechlorination capacity of Ca(OH)2 was improved by adding ions during the ball milling process. Doping of Ca(OH)2 with Cu2+ changed its crystal structure, weakened the diffusion resistance of HCl, and improved Ca(OH)2 utilization. Additionally, it increased the energy of Ca(OH)2 to adsorb HCl.


Asunto(s)
Contaminación del Aire , Contaminantes Ambientales , Contaminación del Aire/prevención & control , Centrales Eléctricas , Carbón Mineral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...