Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
CNS Neurosci Ther ; 30(4): e14535, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38168094

RESUMEN

INTRODUCTION: Self-repair of spinal cord injury (SCI) has been found in humans and experimental animals with partial recovery of neurological functions. However, the regulatory mechanisms underlying the spontaneous locomotion recovery after SCI are elusive. AIMS: This study was aimed at evaluating the pathological changes in injured spinal cord and exploring the possible mechanism related to the spontaneous recovery. RESULTS: Immunofluorescence staining was performed to detect GAP43 expression in lesion site after spinal cord transection (SCT) in rats. Then RNA sequencing and gene ontology (GO) analysis were employed to predict lncRNA that correlates with GAP43. LncRNA smart-silencing was applied to verify the function of lncRNA vof16 in vitro, and knockout rats were used to evaluate its role in neurobehavioral functions after SCT. MicroRNA sequencing, target scan, and RNA22 prediction were performed to further explore the underlying regulatory mechanisms, and miR-185-5p stands out. A miR-185-5p site-regulated relationship with GAP43 and vof16 was determined by luciferase activity analysis. GAP43-silencing, miR-185-5p-mimic/inhibitor, and miR-185-5p knockout rats were also applied to elucidate their effects on spinal cord neurite growth and neurobehavioral function after SCT. We found that a time-dependent increase of GAP43 corresponded with the limited neurological recovery in rats with SCT. CRNA chip and GO analysis revealed lncRNA vof16 was the most functional in targeting GAP43 in SCT rats. Additionally, silencing vof16 suppressed neurite growth and attenuated the motor dysfunction in SCT rats. Luciferase reporter assay showed that miR-185-5p competitively bound the same regulatory region of vof16 and GAP43. CONCLUSIONS: Our data indicated miR-185-5p could be a detrimental factor in SCT, and vof16 may function as a ceRNA by competitively binding miR-185-5p to modulate GAP43 in the process of self-recovery after SCT. Our study revealed a novel vof16-miR-185-5p-GAP43 regulatory network in neurological self-repair after SCT and may underlie the potential treatment target for SCI.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Traumatismos de la Médula Espinal , Animales , Ratas , Luciferasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Proteína GAP-43/genética , Proteína GAP-43/metabolismo
2.
FASEB J ; 38(1): e23312, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38161282

RESUMEN

ProBDNF is the precursor protein of brain-derived neurotrophic factor (BDNF) expressed in the central nervous system and peripheral tissues. Previous studies showed that the blood levels of both proBDNF and p75 neurotrophic receptors (p75NTR) in major depressive disorder (MDD) were increased, but which blood cell types express proBDNF and its receptors is not known. Furthermore, the relationship between proBDNF/p75NTR and inflammatory cytokines in peripheral blood of MDD is unclear. Peripheral blood mononuclear cells (PBMCs) and serum were obtained from depressive patients (n = 32) and normal donors (n = 20). We examined the expression of proBDNF and inflammatory markers and their correlative relationship in patients with major depression. Using flow cytometry analysis, we examined which blood cells express proBDNF and its receptors. Finally, the role of proBDNF/p75NTR signal in inflammatory immune activity of PBMCs was verified in vitro experiments. Inflammatory cytokines in PBMC from MDD patients were increased and correlated with the major depression scores. The levels of IL-1ß and IL-10 were also positively correlated with the major depression scores, while the levels of TNF-α and IL-6 were negatively correlated with the major depression scores. Intriguingly, the levels of sortilin were positively correlated with IL-1ß. Q-PCR and Western blots showed proBDNF, p75NTR, and sortilin levels were significantly increased in PBMCs from MDD patients compared with that from the normal donors. Flow cytometry studies showed that proBDNF and p75NTR were present mainly in CD4+ and CD8+ T cells. The number of proBDNF and p75NTR positive CD4+ and CD8+ T cells from MDD patients was increased and subsequently reversed after therapeutic management. Exogenous proBDNF protein or p75ECD-Fc treatment of cultured PBMC affected the release of inflammatory cytokines in vitro. ProBDNF promoted the expression of inflammatory cytokines, while p75ECD-Fc inhibited the expression of inflammatory cytokines. Given there was an inflammatory response of lymphocytes to proBDNF, it is suggested that proBDNF/p75NTR signaling may upstream inflammatory cytokines in MDD. Our data suggest that proBDNF/p75NTR signaling may not only serve as biomarkers but also may be a potential therapeutic target for MDD.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/metabolismo , Leucocitos Mononucleares/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo , Regulación hacia Arriba , Linfocitos T CD8-positivos/metabolismo , Depresión , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Citocinas/metabolismo
3.
Mol Psychiatry ; 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001337

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with a complex pathogenesis. Senile plaques composed of the amyloid-ß (Aß) peptide in the brain are the core hallmarks of AD and a promising target for the development of disease-modifying therapies. However, over the past 20 years, the failures of clinical trials directed at Aß clearance have fueled a debate as to whether Aß is the principal pathogenic factor in AD and a valid therapeutic target. The success of the recent phase 3 trials of lecanemab (Clarity AD) and donanemab (Trailblazer Alz2), and lessons from previous Aß clearance trials provide critical evidence to support the role of Aß in AD pathogenesis and suggest that targeting Aß clearance is heading in the right direction for AD treatment. Here, we analyze key questions relating to the efficacy of Aß targeting therapies, and provide perspectives on early intervention, adequate Aß removal, sufficient treatment period, and combinatory therapeutics, which may be required to achieve the best cognitive benefits in future trials in the real world.

4.
J Mol Neurosci ; 73(6): 469-484, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37314606

RESUMEN

The early transition to Alzheimer's disease is characterized by a period of accelerated brain atrophy that exceeds normal ageing. Identifying the molecular basis of this atrophy could facilitate the discovery of novel drug targets. The precursor of brain-derived neurotrophic factor, a well characterized neurotrophin, is increased in the hippocampus of aged rodents, while its mature isoform is relatively stable. This imbalance could increase the risk of Alzheimer's disease by precipitating its pathological hallmarks. However, less is known about how relative levels of these isoforms change in middle-aged mice. In addition, the underlying mechanisms that might cause an imbalance are unknown. The main aim of this study was to determine how precursor brain-derived neurotrophic factor changes relative to its mature isoform with normal brain ageing in wild type mice. A secondary aim was to determine if signaling through the neurotrophin receptor, p75 influences this ratio. An increasing ratio was identified in several brain regions, except the hippocampus, suggesting a neurotrophic imbalance occurs as early as middle age. Some changes in receptors that mediate the isoforms effects were also identified, but these did not correspond with trends in the isoforms. Relative amounts of precursor brain-derived neurotrophic factor were mostly unchanged in mutant p75 mice. The lack of changes suggested that signaling through the receptor had no influence on the ratio.


Asunto(s)
Enfermedad de Alzheimer , Factor Neurotrófico Derivado del Encéfalo , Ratones , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Encéfalo/metabolismo , Envejecimiento , Atrofia
5.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37373499

RESUMEN

Anxiety and depressive disorders are closely associated; however, the pathophysiology of these disorders remains poorly understood. Further exploration of the mechanisms involved in anxiety and depression such as the stress response may provide new knowledge that will contribute to our understanding of these disorders. Fifty-eight 8-12-week-old C57BL6 mice were separated into experimental groups by sex as follows: male controls (n = 14), male restraint stress (n = 14), female controls (n = 15) and female restraint stress (n = 15). These mice were taken through a 4-week randomised chronic restraint stress protocol, and their behaviour, as well as tryptophan metabolism and synaptic proteins, were measured in the prefrontal cortex and hippocampus. Adrenal catecholamine regulation was also measured. The female mice showed greater anxiety-like behaviour than their male counterparts. Tryptophan metabolism was unaffected by stress, but some basal sex characteristics were noted. Synaptic proteins were reduced in the hippocampus in stressed females but increased in the prefrontal cortex of all female mice. These changes were not found in any males. Finally, the stressed female mice showed increased catecholamine biosynthesis capability, but this effect was not found in males. Future studies in animal models should consider these sex differences when evaluating mechanisms related to chronic stress and depression.


Asunto(s)
Neuroquímica , Ratones , Femenino , Animales , Masculino , Triptófano/metabolismo , Ratones Endogámicos C57BL , Corteza Prefrontal/metabolismo , Ansiedad/metabolismo , Hipocampo/metabolismo , Depresión/etiología , Depresión/metabolismo , Conducta Animal , Catecolaminas/metabolismo , Estrés Psicológico/metabolismo , Restricción Física
6.
Neuroprotection ; 1(2): 84-98, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38223913

RESUMEN

The global trend toward aging populations has resulted in an increase in the occurrence of Alzheimer's disease (AD) and associated socioeconomic burdens. Abnormal metabolism of amyloid-ß (Aß) has been proposed as a significant pathomechanism in AD, supported by results of recent clinical trials using anti-Aß antibodies. Nonetheless, the cognitive benefits of the current treatments are limited. The etiology of AD is multifactorial, encompassing Aß and tau accumulation, neuroinflammation, demyelination, vascular dysfunction, and comorbidities, which collectively lead to widespread neurodegeneration in the brain and cognitive impairment. Hence, solely removing Aß from the brain may be insufficient to combat neurodegeneration and preserve cognition. To attain effective treatment for AD, it is necessary to (1) conduct extensive research on various mechanisms that cause neurodegeneration, including advances in neuroimaging techniques for earlier detection and a more precise characterization of molecular events at scales ranging from cellular to the full system level; (2) identify neuroprotective intervention targets against different neurodegeneration mechanisms; and (3) discover novel and optimal combinations of neuroprotective intervention strategies to maintain cognitive function in AD patients. The Alzheimer's Disease Neuroprotection Research Initiative's objective is to facilitate coordinated, multidisciplinary efforts to develop systemic neuroprotective strategies to combat AD. The aim is to achieve mitigation of the full spectrum of pathological processes underlying AD, with the goal of halting or even reversing cognitive decline.

7.
Nutrients ; 14(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36432461

RESUMEN

Poorer mental health is common in undergraduate students due to academic stress. An interplay between stress and diet exists, with stress influencing food choices. Nutritional interventions may be effective in preventing mental health decline due to complex bidirectional interactions between the brain, the gut and the gut microbiota. Previous studies have shown walnut consumption has a positive effect on mental health. Here, using a randomized clinical trial (Australian New Zealand Clinical Trials Registry, #ACTRN12619000972123), we aimed to investigate the effects of academic stress and daily walnut consumption in university students on mental health, biochemical markers of general health, and the gut microbiota. We found academic stress had a negative impact on self-reported mood and mental health status, while daily walnut consumption improved mental health indicators and protected against some of the negative effects of academic stress on metabolic and stress biomarkers. Academic stress was associated with lower gut microbial diversity in females, which was improved by walnut consumption. The effects of academic stress or walnut consumption in male participants could not be established due to small numbers of participants. Thus, walnut consumption may have a protective effect against some of the negative impacts of academic stress, however sex-dependent mechanisms require further study.


Asunto(s)
Microbioma Gastrointestinal , Juglans , Femenino , Humanos , Masculino , Salud Mental , Universidades , Australia , Estudiantes
8.
Eur J Neurosci ; 56(8): 5299-5318, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36017737

RESUMEN

The interaction of neurotrophins with their receptors is involved in the pathogenesis and progression of various neurological diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal cord injury and acute and chronic cerebral damage. The p75 neurotrophin receptor (p75NTR) plays a pivotal role in the development of neurological dysfunctions as a result of its high expression, abnormal processing and signalling. Therefore, p75NTR represents as a vital therapeutic target for the treatment of neurodegeneration, neuropsychiatric disorders and cerebrovascular insufficiency. This review summarizes the current research progress on the p75NTR signalling in neurological deficits. We also summarize the present therapeutic approaches by genetically and pharmacologically targeting p75NTR for the attenuation of pathological changes. Based on the evolving knowledge, the role of p75NTR in the regulation of tau hyperphosphorylation, Aß metabolism, the degeneration of motor neurons and dopaminergic neurons has been discussed. Its position as a biomarker to evaluate the severity of diseases and as a druggable target for drug development has also been elucidated. Several prototype small molecule compounds were introduced to be crucial in neuronal survival and functional recovery via targeting p75NTR. These small molecule compounds represent desirable agents in attenuating neurodegeneration and cell death as they abolish activation-induced neurotoxicity of neurotrophins via modulating p75NTR signalling. More comprehensive and in-depth investigations on p75NTR-based drug development are required to shed light on effective treatment of numerous neurological disorders.


Asunto(s)
Enfermedades del Sistema Nervioso , Receptor de Factor de Crecimiento Nervioso , Biomarcadores , Desarrollo de Medicamentos , Humanos , Factores de Crecimiento Nervioso , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo
9.
Front Biosci (Schol Ed) ; 14(2): 13, 2022 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-35730438

RESUMEN

The major hallmark of Parkinson's disease (PD) is the degeneration of dopaminergic neurons in the substantia nigra (SN), which is responsible for the core motor symptoms of PD. Currently, there is no cure for PD, and its prevalence is increasing, prompting the search for novel neuroprotective treatments. Neuroinflammation is a core pathological process in PD, evident by increased inflammatory biomarkers in the SN and cerebrospinal fluid. Interestingly, epidemiological studies have reported a reduced risk of PD in users of non-steroidal anti-inflammatory drugs compared to non-users, suggesting the neuroprotective potential of anti-inflammatory drugs. Therefore, this study aimed to: (1) test the efficacy of novel oral formulations of edaravone (EDR) and curcumin (CUR) (which possess anti-inflammatory and anti-oxidative properties) to alleviate motor and non-motor symptoms, and associated pathology in the intrastriatal lipopolysaccharide (LPS) model of PD; (2) investigate the expression of proteins linked to familial PD and markers of autophagy in the intrastriatal LPS model treated with EDR and CUR. Fifty-two C57BL/6 mice were divided into 4 groups, namely; (1) control + vehicle; (2) LPS + vehicle; (3) LPS + EDR (made in vehicle) and (4) LPS + CUR (made in vehicle). 10 µg of LPS was administered stereotaxically into the right striatum, and EDR and CUR treatments were initiated 2-weeks after the LPS injections. Behavioural tests were carried out at 4- and 8-weeks after LPS injection followed by tissue collection at 8-weeks. Intrastriatal administration of LPS induced motor deficits and anxiety-like behaviours at 4- and 8-weeks, which were accompanied by astroglial activation, increased protein expression of α-synuclein, heat shock cognate protein of 70 kDa (HSC-70) and Rab-10, and reduced levels of tyrosine hydroxylase (TH) protein in the striatum. Additionally, LPS induced astroglial activation in the olfactory bulb, along with changes in the protein expression of HSC-70. The changes associated with EDR and CUR in the striatum and olfactory bulb were not statistically significant compared to the LPS group. Intrastriatal administration of LPS induced pathological changes of PD such as motor deficits, reduced expression of TH protein and increased α-synuclein protein, as well as some alterations in proteins linked to familial PD and autophagy in the olfactory bulb and striatum, without pronounced therapeutic effects of EDR and CUR. Our results may suggest that EDR and CUR lack therapeutic effects when administered after the disease process was already initiated. Thus, our treatment regimen or the physicochemical properties of EDR and CUR could be further refined to elevate the therapeutic effects of these formulations.


Asunto(s)
Curcumina , Enfermedad de Parkinson , Animales , Antiinflamatorios , Curcumina/farmacología , Curcumina/uso terapéutico , Modelos Animales de Enfermedad , Edaravona/farmacología , Lipopolisacáridos , Ratones , Ratones Endogámicos C57BL , Enfermedad de Parkinson/tratamiento farmacológico , alfa-Sinucleína/metabolismo
10.
Metab Brain Dis ; 37(6): 1941-1957, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35704147

RESUMEN

Most Alzheimer disease (AD) patients present as sporadic late onset AD, with metabolic factors playing an important role in the occurrence and development of AD. Given the link between peripheral insulin resistance and tau pathology in streptozotocin-injected and db/db mouse models of diabetes, we fed high fat diet (HFD) to pR5 mice expressing P301L mutant human tau, with the aim of developing a new model with characteristics of obesity, T2DM and AD to mimic AD patients exacerbated by obesity and T2DM, an increasing trend in modern society. In our study, pR5 and C57BL/6 (WT) mice were randomly allocated to a standard diet (STD) or HFD for 30 weeks starting at 8 weeks of age. Food intake was measured weekly, body weight and fasting glucose levels were measured fortnightly, and a comprehensive behavioral test battery was performed to assess anxiety, depression and cognitive dysfunction. Glucose and insulin tolerance tests were performed after 30 weeks of HFD. We also investigated the effect of long term HFD on tau pathology in the brains of WT and P301L mice by performing western blotting of whole brain homogenates for total tau, phosphorylated tau at Ser396 and Thr231. Our results show that pR5 mice fed with HFD are more vulnerable to diet induced obesity compared to WT, especially with increasing age. In addition, pR5 mice on HFD developed glucose intolerance and insulin resistance. It was identified that long term HFD significantly aggravates depression like behavior and impairs cognitive function in pR5 mice, and also induces anxiety like behavior in both pR5 and WT mice. Long term HFD was also shown to aggravate tau hyperphosphorylation in pR5 transgenic mice, and increase total and hyperphosphorylated tau in WT mice. These results indicate that diet induced obesity of pR5 transgenic mice expressing P301L mutant human tau generates T2DM, and aggravates tau phosphorylation, and is therefore a model useful for investigations that seek to understand the relationships between AD, T2DM and obesity, and the underlying biochemical changes and mechanisms associated with metabolic disorders and AD tauopathy.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Enfermedades Metabólicas , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Animales , Cognición , Disfunción Cognitiva/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Glucosa , Enfermedades Metabólicas/complicaciones , Enfermedades Metabólicas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/complicaciones , Proteínas tau
12.
Neurotox Res ; 40(4): 995-1006, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35635716

RESUMEN

Edaravone has been widely used in the treatment of acute ischemic stroke. However, there has been no oral preparation of edaravone in the clinic. In this study, we assessed the effect and possible mechanisms of oral edaravone on the middle cerebral artery occlusion (MCAO) model in rats. Highly bioavailable form of novel edaravone formulation developed using self-nanomicellizing solid dispersion strategy which showed up to 16.1-fold improved oral bioavailability was considered oral edaravone. The male rats (n = 84) were randomly divided into sham; model; oral edaravone in low dose (10 mg/kg), medium dose (20 mg/kg), and high dose (30 mg/kg); and edaravone by intraperitoneal administration group (IP group, 10 mg/kg). Rats were treated with different drugs 5 h after the operation, twice a day for 7 days. The behavioral data were dose-dependently improved by oral edaravone and sensorimotor functions of the high dose group were similar to those of the edaravone by IP route group. Furthermore, oral edaravone significantly reduced cerebral infarction area and downregulated the levels of caspase-3, GFAP, Iba1, 3-NT, and 4-HNE, whereas upregulated those of Vamp-2 and Map-2 in a dose-dependent manner. Especially effect of the high dose on these molecules was equal to that of edaravone by IP administration. Taken together, our data suggest that the improvement of sensorimotor deficits by oral edaravone in high doses after ischemia is similar to that in edaravone by IP administration. Neuroprotection of oral edaravone is at least partial by minimizing oxidative stress, the overactivation of glial cells, and the levels of the apoptosis-associated proteins, and alleviating synaptic damage in a dose-dependent manner.


Asunto(s)
Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Animales , Antipirina/uso terapéutico , Edaravona/uso terapéutico , Depuradores de Radicales Libres/uso terapéutico , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Masculino , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratas
14.
FASEB J ; 36(3): e22180, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35129860

RESUMEN

P75 pan-neurotrophin receptor (p75NTR) is an important receptor for the role of neurotrophins in survival and death of neurons during development and after nerve injury. Our previous research found that the precursor of brain-derived neurotrophic factor (proBDNF) regulates pain as an inflammatory mediator. The current understanding of the role of proBDNF/p75NTR signaling pathway in inflammatory arthritis pain and rheumatoid arthritis (RA) is unclear. We recruited 20 RA patients, 20 healthy donors (HDs), and 10 osteoarthritis (OA) patients. Hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) of proBDNF and p75NTR in synovial membrane were performed and evaluated. We next examined the mRNA and protein expression of proBDNF/p75NTR signaling pathway in peripheral blood mononuclear cells (PBMCs) and synovial tissue. ELISA and flow cytometry were assessed between the blood of RA patients and HD. To induce RA, collagen-induced arthritis (CIA) were induced in mice. We found over-synovitis of RA synovial membrane compared to OA controls in histologic sections. P75NTR and sortilin mRNA, and proBDNF protein level were significantly increased in PBMCs of RA patients compared with the HD. Consistently, ELISA showed that p75NTR, sortilin, tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and interleukin-10 (IL-10) levels in the serum of RA patients were increased compared with HD and p75NTR, sortilin were positively correlated with Disease Activity Score in 28 joints (DAS28). In addition, using flow cytometry we showed that the increased levels of proBDNF and p75NTR characterized in CD4+ and CD8+ T cells of RA patients were subsequently reversed with methotrexate (MTX) treatment. Furthermore, we found pathological changes, inflammatory pain, upregulation of the mRNA and protein expression of proBDNF/p75NTR signaling pathway, and upregulation of inflammatory cytokines in spinal cord using a well-established CIA mouse model. We showed intravenous treatment of recombinant p75ECD-Fc that biologically blocked all inflammatory responses and relieved inflammatory pain of animals with CIA. Our findings showed the involvement of proBDNF/p75NTR pathway in the RA inflammatory response and how blocking it with p75ECD-Fc may be a promising therapeutic treatment for RA.


Asunto(s)
Artritis Reumatoide/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Interleucinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Adulto , Animales , Femenino , Humanos , Interleucinas/sangre , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Precursores de Proteínas/metabolismo , Membrana Sinovial/metabolismo , Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/sangre
15.
Eur J Pharmacol ; 920: 174846, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35202676

RESUMEN

Oxidative stress plays a crucial role in the pathophysiology of diastolic dysfunction associated with diabetic cardiomyopathy. Novel oral edaravone (OED) alleviates oxidative stress by scavenging free radicals and may be suitable for the treatment of chronic diseases such as diabetic cardiomyopathy. Oral administration of OED to type 2 diabetic rats (induced by high-sugar/high-fat diet and intraperitoneal injection of streptozotocin) for 4 w decreased malondialdehyde and increased superoxide dismutase. Moreover, it significantly improved ratios of early to late diastolic peak velocity, myocardium hypertrophy accompanied by decreased cross-sectional areas of cardiomyocytes, the proportion of apoptotic cells, collagen volume fractions, and deposition of collagen I/III. In H9c2 cells, OED reduced reactive oxygen species, cell surface area, and numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling-positive cells induced by glucolipotoxicity. OED remarkably upregulated expression of the nuclear factor E2-related factor (Nrf2) signaling pathway both in vivo and in vitro. In addition, OED promoted Nrf2 nuclear translocation and upregulated nicotinamide adenine dinucleotide phosphate quinone oxidoreductase and heme oxygenase. Silencing of Nrf2 abolished the protective effect of OED in H9c2 cells. Our findings demonstrate that OED has the therapeutic potential to ameliorate diastolic dysfunction associated with diabetic cardiomyopathy. Its effect was mainly achieved by attenuating hyperglycemia and hyperlipidemia-induced cardiomyocyte hypertrophy, apoptosis, and fibrosis by activating the Nrf2 signaling pathway.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Animales , Apoptosis , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Edaravona/farmacología , Edaravona/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Ratas , Transducción de Señal
16.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35163660

RESUMEN

Induced neural stem cells (iNSCs) reprogrammed from somatic cells hold great potentials for drug discovery, disease modelling and the treatment of neurological diseases. Although studies have shown that human somatic cells can be converted into iNSCs by introducing transcription factors, these iNSCs are unlikely to be used for clinical application due to the safety concern of using exogenous genes and viral transduction vectors. Here, we report the successful conversion of human fibroblasts into iNSCs using a cocktail of small molecules. Furthermore, our results demonstrate that these human iNSCs (hiNSCs) have similar gene expression profiles to bona fide NSCs, can proliferate, and are capable of differentiating into glial cells and functional neurons. This study collectively describes a novel approach based on small molecules to produce hiNSCs from human fibroblasts, which may be useful for both research and therapeutic purposes.


Asunto(s)
Diferenciación Celular , Fibroblastos/citología , Células-Madre Neurales/citología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Fenómenos Electrofisiológicos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Ratones , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
17.
Sci Adv ; 8(3): eabj2797, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35044824

RESUMEN

Inappropriate expansion of antibody-secreting cells (ASCs) is typical of systemic lupus erythematosus (SLE), but the regulatory signaling of pathogenic ASCs is unclear. The present study shows that brain-derived neurotrophic factor precursor (proBDNF) and its high-affinity pan-75 neurotrophin receptor (p75NTR) are highly expressed in CD19+CD27hiCD38hi ASCs in patients with SLE and in CD19+CD44hiCD138+ ASCs in lupus-like mice. The increased proBDNF+ ASCs were positively correlated with clinical symptoms and higher titers of autoantibodies in SLE. Administration of monoclonal antibodies against proBDNF or specific knockout of p75NTR in CD19+ B cells exerted a therapeutic effect on lupus mice by limiting the proportion of ASCs, reducing the production of autoantibodies and attenuating kidney injury. Blocking the biological function of proBDNF or p75NTR also inhibits ASC differentiation and antibody production in vitro. Together, these findings suggest that proBDNF-p75NTR signaling plays a critical pathogenic role in SLE through promoting ASC dysfunction.


Asunto(s)
Lupus Eritematoso Sistémico , Receptores de Factor de Crecimiento Nervioso , Animales , Antígenos CD19 , Autoanticuerpos , Linfocitos B , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo , Regulación hacia Arriba
18.
Rev Neurosci ; 33(5): 515-529, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34982865

RESUMEN

Alzheimer's disease is a neurodegenerative condition that is potentially mediated by synaptic dysfunction before the onset of cognitive impairments. The disease mostly affects elderly people and there is currently no therapeutic which halts its progression. One therapeutic strategy for Alzheimer's disease is to regenerate lost synapses by targeting mechanisms involved in synaptic plasticity. This strategy has led to promising drug candidates in clinical trials, but further progress needs to be made. An unresolved problem of Alzheimer's disease is to identify the molecular mechanisms that render the aged brain susceptible to synaptic dysfunction. Understanding this susceptibility may identify drug targets which could halt, or even reverse, the disease's progression. Brain derived neurotrophic factor is a neurotrophin expressed in the brain previously implicated in Alzheimer's disease due to its involvement in synaptic plasticity. Low levels of the protein increase susceptibility to the disease and post-mortem studies consistently show reductions in its expression. A desirable therapeutic approach for Alzheimer's disease is to stimulate the expression of brain derived neurotrophic factor and potentially regenerate lost synapses. However, synthesis and secretion of the protein are regulated by complex activity-dependent mechanisms within neurons, which makes this approach challenging. Moreover, the protein is synthesised as a precursor which exerts the opposite effect of its mature form through the neurotrophin receptor p75NTR. This review will evaluate current evidence on how age-related alterations in the synthesis, processing and signalling of brain derived neurotrophic factor may increase the risk of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Factor Neurotrófico Derivado del Encéfalo , Anciano , Enfermedad de Alzheimer/metabolismo , Atrofia/metabolismo , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Humanos , Receptores de Factor de Crecimiento Nervioso/metabolismo
19.
Physiol Behav ; 247: 113721, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35074305

RESUMEN

Stress hormones such as cortisol play a critical role in depressive disorders. Therefore, corticosterone has been used to develop a depression model in animals. Our previous studies found that the precursor of brain-derived neurotrophic factor (proBDNF) and its receptors are upregulated in depression in human and animal models. In the present study, we aimed to examine whether proBDNF and mature BDNF (mBDNF) are altered in the corticosterone-induced depression model in mice. Male and female mice were given corticosterone dissolved in 0.3% hydroxypropyl- ß-cyclodextrin (ß-CD) or vehicle (ß-CD) in drinking water for 33 days. We have found that corticosterone induced depressive-like behaviours as reflected by increased immobility time in the tail suspension test and decreased grooming time in the splash test. Corticosterone also induced anxiety-like behaviours as represented by decreased entries into the central zone of the open field test and the open arms of the elevated plus maze test. We found that corticosterone administration resulted in differential changes of proBDNF and mature BDNF in different brain regions and peripheral tissues. ProBDNF was increased in the hippocampus and cerebellum, but no change was found in the prefrontal cortex and hypothalamus. Both proBDNF and mBDNF were significantly increased in the pituitary gland. In contrast, proBDNF was significantly decreased in the adrenal gland.  There were no significant changes in proBDNF or mBDNF in other peripheral tissues, including the liver and sex organs. We conclude that the stress hormone corticosterone causes depressive behaviours but differentially regulates the processing of proBDNF in mice. ProBDNF may participate in the development of depression behaviours in corticosterone treated animals.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Corticosterona , Afecto , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corticosterona/metabolismo , Corticosterona/farmacología , Femenino , Hipocampo/metabolismo , Masculino , Ratones , Corteza Prefrontal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...