Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(7): 110207, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38984200

RESUMEN

Host specificity plays important roles in expanding the host range of rhizobia, while the genetic information responsible for host specificity remains largely unexplored. In this report, the roots of four symbiotic systems with notable different symbiotic phenotypes and the control were studied at four different post-inoculation time points by RNA sequencning (RNA-seq). The differentially expressed genes (DEGs) were divided into "found only in soybean or Lotus," "only expressed in soybean or Lotus," and "expressed in both hosts" according to the comparative genomic analysis. The distributions of enriched function ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways vary significantly in different symbiotic systems. Host specific genes account for the majority of the DEGs involved in response to stimulus, associated with plant-pathogen interaction pathways, and encoding resistance (R) proteins, the symbiotic nitrogen fixation (SNF) proteins and the target proteins in the SNF-related modules. Our findings provided molecular candidates for better understanding the mechanisms of symbiotic host-specificity.

2.
Nat Commun ; 15(1): 3310, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632249

RESUMEN

Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is a devastating disease that is present in all major soybean-producing regions. The limited availability of resistant germplasm has resulted in a scarcity of commercial soybean cultivars that are resistant to the disease. To date, only the Chinese soybean landrace SX6907 has demonstrated an immune response to ASR. In this study, we present the isolation and characterization of Rpp6907-7 and Rpp6907-4, a gene pair that confer broad-spectrum resistance to ASR. Rpp6907-7 and Rpp6907-4 encode atypic nucleotide-binding leucine-rich repeat (NLR) proteins that are found to be required for NLR-mediated immunity. Genetic analysis shows that only Rpp6907-7 confers resistance, while Rpp6907-4 regulates Rpp6907-7 signaling activity by acting as a repressor in the absence of recognized effectors. Our work highlights the potential value of using Rpp6907 in developing resistant soybean cultivars.


Asunto(s)
Phakopsora pachyrhizi , Glycine max , Genes de Plantas , Enfermedades de las Plantas/genética
3.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686258

RESUMEN

Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is one of the most destructive foliar diseases that affect soybeans. Developing resistant cultivars is the most cost-effective, environmentally friendly, and easy strategy for controlling the disease. However, the current understanding of the mechanisms underlying soybean resistance to P. pachyrhizi remains limited, which poses a significant challenge in devising effective control strategies. In this study, comparative transcriptomic profiling using one resistant genotype and one susceptible genotype was performed under infected and control conditions to understand the regulatory network operating between soybean and P. pachyrhizi. RNA-Seq analysis identified a total of 6540 differentially expressed genes (DEGs), which were shared by all four genotypes. The DEGs are involved in defense responses, stress responses, stimulus responses, flavonoid metabolism, and biosynthesis after infection with P. pachyrhizi. A total of 25,377 genes were divided into 33 modules using weighted gene co-expression network analysis (WGCNA). Two modules were significantly associated with pathogen defense. The DEGs were mainly enriched in RNA processing, plant-type hypersensitive response, negative regulation of cell growth, and a programmed cell death process. In conclusion, these results will provide an important resource for mining resistant genes to P. pachyrhizi infection and valuable resources to potentially pyramid quantitative resistance loci for improving soybean germplasm.


Asunto(s)
Phakopsora pachyrhizi , Transcriptoma , RNA-Seq , Phakopsora pachyrhizi/genética , Glycine max/genética , Resistencia a la Enfermedad/genética , Genotipo
4.
Int J Mol Sci ; 24(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37629058

RESUMEN

Sucrose metabolism plays a critical role in development, stress response, and yield formation of plants. Sucrose phosphate synthase (SPS) is the key rate-limiting enzyme in the sucrose synthesis pathway. To date, genome-wide survey and comprehensive analysis of the SPS gene family in soybean (Glycine max) have yet to be performed. In this study, seven genes encoding SPS were identified in soybean genome. The structural characteristics, phylogenetics, tissue expression patterns, and cold stress response of these GmSPSs were investigated. A comparative phylogenetic analysis of SPS proteins in soybean, Medicago truncatula, Medicago sativa, Lotus japonicus, Arabidopsis, and rice revealed four families. GmSPSs were clustered into three families from A to C, and have undergone five segmental duplication events under purifying selection. All GmSPS genes had various expression patterns in different tissues, and family A members GmSPS13/17 were highly expressed in nodules. Remarkably, all GmSPS promoters contain multiple low-temperature-responsive elements such as potential binding sites of inducer of CBF expression 1 (ICE1), the central regulator in cold response. qRT-PCR proved that these GmSPS genes, especially GmSPS8/18, were induced by cold treatment in soybean leaves, and the expression pattern of GmICE1 under cold treatment was similar to that of GmSPS8/18. Further transient expression analysis in Nicotiana benthamiana and electrophoretic mobility shift assay (EMSA) indicated that GmSPS8 and GmSPS18 transcriptions were directly activated by GmICE1. Taken together, our findings may aid in future efforts to clarify the potential roles of GmSPS genes in response to cold stress in soybean.


Asunto(s)
Arabidopsis , Glycine max , Glycine max/genética , Respuesta al Choque por Frío/genética , Filogenia , Sitios de Unión
5.
BMC Genomics ; 24(1): 494, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37641045

RESUMEN

BACKGROUND: Soybean is one of the most important oil crops in the world. The domestication of wild soybean has resulted in significant changes in the seed oil content and seed size of cultivated soybeans. To better understand the molecular mechanisms of seed formation and oil content accumulation, WDD01514 (E1), ZYD00463 (E2), and two extreme progenies (E23 and E171) derived from RILs were used for weighted gene coexpression network analysis (WGCNA) combined with transcriptome analysis. RESULTS: In this study, both seed weight and oil content in E1 and E171 were significantly higher than those in E2 and E23, and 20 DAF and 30 DAF may be key stages of soybean seed oil content accumulation and weight increase. Pathways such as "Photosynthesis", "Carbon metabolism", and "Fatty acid metabolism", were involved in oil content accumulation and grain formation between wild and cultivated soybeans at 20 and 30 DAF according to RNA-seq analysis. A total of 121 oil content accumulation and 189 seed formation candidate genes were screened from differentially expressed genes. WGCNA identified six modules related to seed oil content and seed weight, and 76 candidate genes were screened from modules and network. Among them, 16 genes were used for qRT-PCR and tissue specific expression pattern analysis, and their expression-levels in 33-wild and 23-cultivated soybean varieties were subjected to correlation analysis; some key genes were verified as likely to be involved in oil content accumulation and grain formation. CONCLUSIONS: Overall, these results contribute to an understanding of seed lipid metabolism and seed size during seed development, and identify potential functional genes for improving soybean yield and seed oil quantity.


Asunto(s)
Fabaceae , Glycine max , Glycine max/genética , Semillas/genética , Perfilación de la Expresión Génica , Grano Comestible , Aceites de Plantas
6.
Plant Physiol Biochem ; 202: 107915, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37536218

RESUMEN

Kunitz-like protease inhibitors (KTIs) have been identified to play critical roles in insect defense, but evidence for their involvement in drought stress is sparse. The aim of this study was to identify and functionally characterize a Kunitz-like protease inhibitor, GsKTI, from the wild soybean (Glycine soja) variety ED059. Expression patterns suggest that drought stress and insect herbivory may induce GsKTI transcript levels. Transgenic Arabidopsis lines overexpressing GsKTI have been shown to exhibit enhanced drought tolerance by regulating the ABA signaling pathway and increasing xylem cell number. Transgenic Arabidopsis leaves overexpressing GsKTI interfered with insect digestion and thus had a negative effect on the growth of Helicoverpa armigera. It is concluded that GsKTI increases resistance to drought stress and insect attack in transgenic Arabidopsis lines.


Asunto(s)
Arabidopsis , Fabaceae , Mariposas Nocturnas , Animales , Arabidopsis/metabolismo , Glycine max/metabolismo , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/metabolismo , Sequías , Proteínas de Plantas/genética , Fabaceae/metabolismo , Mariposas Nocturnas/metabolismo , Glicina/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
7.
J Exp Bot ; 74(18): 5820-5839, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37470327

RESUMEN

The gene networks surrounding Nod factor receptors that govern the symbiotic process between legumes and rhizobia remain largely unexplored. Here, we identify 13 novel GmNFR1α-associated proteins by yeast two-hybrid screening, and describe a potential interacting protein, GmBI-1α. GmBI-1α had the highest positive correlation with GmNFR1α in a co-expression network analysis, and its expression at the mRNA level in roots was enhanced by rhizobial infection. Moreover, GmBI-1α-GmNFR1α interaction was shown to occur in vitro and in vivo. The GmBI-1α protein was localized to multiple subcellular locations, including the endoplasmic reticulum and plasma membrane. Overexpression of GmBI-1α increased the nodule number in transgenic hairy roots or transgenic soybean, whereas down-regulation of GmBI-1α transcripts by RNA interference reduced the nodule number. In addition, the nodules in GmBI-1α-overexpressing plants became smaller in size and infected area with reduced nitrogenase activity. In GmBI-1α-overexpressing transgenic soybean, the elevated GmBI-1α also promoted plant growth and suppressed the expression of defense signaling-related genes. Infection thread analysis of GmBI-1α-overexpressing plants showed that GmBI-1α promoted rhizobial infection. Collectively, our findings support a GmNFR1α-associated protein in the Nod factor signaling pathway and shed new light on the regulatory mechanism of GmNFR1α in rhizobial symbiosis.


Asunto(s)
Fabaceae , Rhizobium , Simbiosis/genética , Fabaceae/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Glycine max/metabolismo , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética
8.
Phys Rev Lett ; 129(10): 101601, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36112453

RESUMEN

We point out that an infinite class of Witten diagrams is invariant under a Yangian symmetry. These diagrams are building blocks of holographic correlators and are related by a web of differential recursion relations. We show that Yangian invariance is equivalent to the consistency conditions of the recursion relations.

9.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36142739

RESUMEN

With global warming and regional decreases in precipitation, drought has become a problem worldwide. As the number of arid regions in the world is increasing, drought has become a major factor leading to significant crop yield reductions and food crises. Soybean is a crop that is relatively sensitive to drought. It is also a crop that requires more water during growth and development. The aim of this study was to identify the quantitative trait locus (QTL) that affects drought tolerance in soybean by using a recombinant inbred line (RIL) population from a cross between the drought-tolerant cultivar 'Jindou21' and the drought-sensitive cultivar 'Zhongdou33'. Nine agronomic and physiological traits were identified under drought and well-watered conditions. Genetic maps were constructed with 923,420 polymorphic single nucleotide polymorphism (SNP) markers distributed on 20 chromosomes at an average genetic distance of 0.57 centimorgan (cM) between markers. A total of five QTLs with a logarithm of odds (LOD) value of 4.035-8.681 were identified on five chromosomes. Under well-watered conditions and drought-stress conditions, one QTL related to the main stem node number was located on chromosome 16, accounting for 17.177% of the phenotypic variation. Nine candidate genes for drought resistance were screened from this QTL, namely Glyma.16G036700, Glyma.16G036400, Glyma.16G036600, Glyma.16G036800, Glyma.13G312700, Glyma.13G312800, Glyma.16G042900, Glyma.16G043200, and Glyma.15G100700. These genes were annotated as NAC transport factor, GATA transport factor, and BTB/POZ-MATH proteins. This result can be used for molecular marker-assisted selection and provide a reference for breeding for drought tolerance in soybean.


Asunto(s)
Glycine max , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Sequías , Factores de Transcripción GATA/genética , Fenotipo , Fitomejoramiento , Glycine max/genética , Agua
10.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35806432

RESUMEN

Ovate family proteins (OFPs) are valued as a family of transcription factors that are unique to plants, and they play a pluripotent regulatory role in plant growth and development, including secondary-cell-wall synthesis, DNA repair, gibberellin synthesis, and other biological processes, via their interaction with TALE family proteins. In this study, CHIP-SEQ was used to detect the potential target genes of AtOFP1 and its signal-regulation pathways. On the other hand, Y2H and BIFC were employed to prove that AtOFP1 can participate in ABA signal transduction by interacting with one of the TALE family protein called AtKNAT3. ABA response genes are not only significantly upregulated in the 35S::HAOFP1 OE line, but they also show hypersensitivity to ABA in terms of seed germination and early seedling root elongation. In addition, the AtOFP1-regulated target genes are mainly mitochondrial membranes that are involved in the oxidative-phosphorylation pathway. Further qRT-PCR results showed that the inefficient splicing of the respiratory complex I subunit genes NAD4 and NAD7 may lead to ROS accumulation in 35S::HA-AtOFP1 OE lines. In conclusion, we speculated that the overexpression of AtOFP1 may cause the ABA hypersensitivity response by increasing the intracellular ROS content generated from damage to the intima systems of mitochondria.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fenómenos Biológicos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Homeostasis , Especies Reactivas de Oxígeno/metabolismo , Semillas/metabolismo , Factores de Transcripción/metabolismo
11.
Phys Rev Lett ; 128(16): 161601, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35522501

RESUMEN

We present the tree-level five-point amplitude of the lowest Kaluza-Klein mode of super-Yang-Mills theory on AdS_{5}×S^{3}, dual to the correlator of the flavor current multiplet in the dual 4d N=2 superconformal field theory. Its color and kinematical structure is particularly simple and resembles that of the flat-space gluon amplitude.

12.
Front Plant Sci ; 13: 802716, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273623

RESUMEN

Leaf-chewing insects are important pests that cause yield loss and reduce seed quality in soybeans (Glycine max). Breeding soybean varieties that are resistant to leaf-chewing insects can minimize the need for insecticide use and reduce yield loss. The marker gene for QTL-M, Glyma.07g110300 (LOC100775351) that encodes a UDP-glycosyltransferase (UGT) is the major determinant of resistance against leaf-chewing insects in soybean; it exhibits a loss of function in insect-resistant soybean germplasms. In this study, Agrobacterium-mediated transformation introduced the CRISPR/Cas9 expression vector into the soybean cultivar Tianlong No. 1 to generate Glyma.07g110300-gene mutants. We obtained two novel types of mutations, a 33-bp deletion and a single-bp insertion in the GmUGT coding region, which resulted in an enhanced resistance to Helicoverpa armigera and Spodoptera litura. Additionally, overexpressing GmUGT produced soybean varieties that were more sensitive to H. armigera and S. litura. Both mutant and overexpressing lines exhibited no obvious phenotypic changes. The difference in metabolites and gene expression suggested that GmUGT is involved in imparting resistance to leaf-chewing insects by altering the flavonoid content and expression patterns of genes related to flavonoid biosynthesis and defense. Furthermore, ectopic expression of the GmUGT gene in the ugt72b1 mutant of Arabidopsis substantially rescued the phenotype of H. armigera resistance in the atugt72b1 mutant. Our study presents a strategy for increasing resistance against leaf-chewing insects in soybean through CRISPR/Cas9-mediated targeted mutagenesis of the UGT genes.

13.
Front Microbiol ; 12: 754837, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858367

RESUMEN

Legume nodule development and senescence directly affect nitrogen fixation efficiency and involve a programmed series of molecular events. These molecular events are carried out synchronously by legumes and rhizobia. The characteristics and molecular mechanisms of nitrogen fixation at soybean important developmental stages play critical roles in soybean cultivation and fertilizer application. Although the gene expression of soybean were analyzed in nodules at five important soybean developmental stages, information on the expression of rhizobial genes in these nodule samples is limited. In the present study, we investigated the expression of Bradyrhizobium diazoefficiens 113-2 genes in the nodule samples from five developmental stages of soybean (Branching stage, flowering stage, fruiting stage, pod stage and harvest stage). Similar gene expression patterns of B. diazoefficiens 113-2 were existed during optimal symbiotic functioning, while different expression patterns were found among early nodule development, nitrogen fixation progress and nodule senescence. Besides, we identified 164 important different expression genes (DEGs) associated with nodule development and senescence. These DEGs included those encoding nod, nif, fix proteins and T3SS secretion system-related proteins, as well as proteins involved in nitrogen metabolism, ABC transporters and two-component system pathways. Gene Ontology, KEGG pathway and homology analysis of the identified DEGs revealed that most of these DEGs are uncharacterized genes associated with nodule development and senescence, and they are not core genes among the rhizobia genomes. Our results provide new clues for the understanding of the genetic determinants of soil rhizobia in nodule development and senescence, and supply theoretical basis for the creation of high efficiency soybean cultivation technology.

14.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830397

RESUMEN

The LOR (LURP-one related) family genes encode proteins containing a conserved LOR domain. Several members of the LOR family genes are required for defense against Hyaloperonospora parasitica (Hpa) in Arabidopsis. However, there are few reports of LOR genes in response to abiotic stresses in plants. In this study, a genome-wide survey and expression levels in response to abiotic stresses of 36 LOR genes from Glycine max were conducted. The results indicated that the GmLOR gene family was divided into eight subgroups, distributed on 14 chromosomes. A majority of members contained three extremely conservative motifs. There were four pairs of tandem duplicated GmLORs and nineteen pairs of segmental duplicated genes identified, which led to the expansion of the number of GmLOR genes. The expansion patterns of the GmLOR family were mainly segmental duplication. A heatmap of soybean LOR family genes showed that 36 GmLOR genes exhibited various expression patterns in different tissues. The cis-acting elements in promoter regions of GmLORs include abiotic stress-responsive elements, such as dehydration-responsive elements and drought-inducible elements. Real-time quantitative PCR was used to detect the expression level of GmLOR genes, and most of them were expressed in the leaf or root except that GmLOR6 was induced by osmotic and salt stresses. Moreover, GmLOR4/10/14/19 were significantly upregulated after PEG and salt treatments, indicating important roles in the improvement of plant tolerance to abiotic stress. Overall, our study provides a foundation for future investigations of GmLOR gene functions in soybean.


Asunto(s)
Glycine max/genética , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Arabidopsis/genética , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , Familia de Multigenes/genética , Filogenia , Regiones Promotoras Genéticas/genética , Duplicaciones Segmentarias en el Genoma/genética , Glycine max/crecimiento & desarrollo
15.
Phys Rev Lett ; 127(14): 141601, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34652180

RESUMEN

We present a double copy relation in AdS_{5} that relates tree-level four-point amplitudes of supergravity, super Yang-Mills, and bi-adjoint scalars.

16.
Dalton Trans ; 50(40): 14187-14195, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34549761

RESUMEN

Ni-rich LiNi0.8Co0.15Al0.05O2 materials have been successfully applied in electric vehicles due to the merits of high energy density which can meet the requirements for driving range. Nevertheless, the electrochemical performances of Ni-rich materials are limited by their structural instability. Herein, LiNi0.8Co0.15Al0.05O2 materials with the concentration-gradient structure of a Ni-rich core and a Co-rich surface were synthesized. The electrochemical results indicate that surface-concentration gradient LiNi0.8Co0.15Al0.05O2 provides improved electrochemical performance. It not only displays an initial Coulomb efficiency of 82.4%, and a capacity retention of 80.37% after 200 cycles at 25 °C, but also shows a capacity retention of 77.76% after 150 cycles at a high temperature of 55 °C. These excellent performances can be attributed to adjusting the distribution of Ni on the surface of the LiNi0.8Co0.15Al0.05O2 material, which inhibits the interfacial reaction between the material surface and electrolyte, lowers the consumption of active Li+ and decreases the interfacial film impedance. Moreover, less Ni content on the material surface is beneficial for reducing the formation of a NiO rock salt phase during the charging process and inhibits the surface structural evolution. The proposed method and detected mechanism will provide guidance for the design of cathode materials and their practical industrial applications.

17.
Front Plant Sci ; 12: 710754, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484271

RESUMEN

Crop yield has been maintaining its attraction for researchers because of the demand of global population growth. Mutation of flowering activators, such as florigen, increases plant biomass at the expense of later flowering, which prevents crop maturity in the field. As a result, it is difficult to apply flowering activators in agriculture production. Here, we developed a strategy to utilize florigen to significantly improve soybean yield in the field. Through the screening of transgenic lines of RNAi-silenced florigen homologs in soybean (Glycine-max-Flowering Locus T Like, GmFTL), we identified a line, GmFTL-RNAi#1, with minor changes in both GmFTL expression and flowering time but with notable increase in soybean yield. As expected, GmFTL-RNAi#1 matured normally in the field and exhibited markedly high yield over multiple locations and years, indicating that it is possible to reach a trade-off between flowering time and high yield through the fine-tuning expression of flowering activators. Further studies uncovered an unknown mechanism by which GmFTL negatively regulates photosynthesis, a substantial source of crop yield, demonstrating a novel function of florigen. Thus, because of the highly conserved functions of florigen in plants and the classical RNAi approach, the findings provide a promising strategy to harness early flowering genes to improve crop yield.

18.
Plants (Basel) ; 10(6)2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070891

RESUMEN

Delaying the nodule senescence of legume crops can prolong the time of nitrogen fixation and attenuate the lack of fertilizer in the later stage of legume crop cultivation, resulting in improved crop yield and reduced usage of nitrogen fertilizer. However, effective measures to delay the nodule senescence of legume crops in agriculture are relatively lacking. In the present review, we summarized the structural and physiological characteristics of nodule senescence, as well as the corresponding detection methods, providing technical support for the identification of nodule senescence phenotype. We then outlined the key genes currently known to be involved in the regulation of nodule senescence, offering the molecular genetic information for breeding varieties with delayed nodule senescence. In addition, we reviewed various abiotic factors affecting nodule senescence, providing a theoretical basis for the interaction between molecular genetics and abiotic factors in the regulation of nodule senescence. Finally, we briefly prospected research foci of nodule senescence in the future.

19.
Sci Rep ; 11(1): 5805, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707575

RESUMEN

An accurate state of charge (SOC) estimation in battery management systems (BMS) is of crucial importance to guarantee the safe and effective operation of automotive batteries. However, the BMS consistently suffers from inaccuracy of SOC estimation. Herein, we propose a SOC estimation approach with both high accuracy and robustness based on an improved extended Kalman filter (IEKF). An equivalent circuit model is established, and the simulated annealing-particle swarm optimization (SA-PSO) algorithm is used for offline parameter identification. Furthermore, improvements have been made with noise adaptation, a fading filter and a linear-nonlinear filtering based on the traditional EKF method, and rigorous mathematical proof has been carried out accordingly. To deal with model mismatch, online parameter identification is achieved by a dual Kalman filter. Finally, various experiments are performed to validate the proposed IEKF. Experimental results show that the IEKF algorithm can reduce the error to 2.94% under dynamic stress test conditions, and robustness analysis is verified with noise interference, hence demonstrating its practicability for extending to state estimation of battery packs applied in real-world operating conditions.

20.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33451131

RESUMEN

Tomato (Solanum lycopersicum) as an important vegetable grown around the world is threatened by many diseases, which seriously affects its yield. Therefore, studying the interaction between tomato and pathogenic bacteria is biologically and economically important. The TPR (Tetratricopeptide repeat) gene family is a class of genes containing TPR conserved motifs, which are widely involved in cell cycle regulation, gene expression, protein degradation and other biological processes. The functions of TPR gene in Arabidopsis and wheat plants have been well studied, but the research on TPR genes in tomato is not well studied. In this study, 26 TPR gene families were identified using bioinformatics based on tomato genome data, and they were analyzed for subcellular localization, phylogenetic evolution, conserved motifs, tissue expression, and GO (Gene Ontology) analysis. The qRT-PCR was used to detect the expression levels of each member of the tomato TPR gene family (SlTPRs) under biological stress (Botrytis cinerea) and abiotic stress such as drought and abscisic acid (ABA). The results showed that members of the tomato TPR family responded to various abiotic stresses and Botrytis cinerea stress, and the SlTPR2 and SlTPR4 genes changed significantly under different stresses. Using VIGS (Virus-induced gene silencing) technology to silence these two genes, the silenced plants showed reduced disease resistance. It was also shown that TPR4 can interact with atpA which encodes a chloroplast ATP synthase CF1 α subunit. The above results provide a theoretical basis for further exploring the molecular mechanism of TPR-mediated resistance in disease defense, and also provide a foundation for tomato disease resistance breeding.


Asunto(s)
Familia de Multigenes , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Repeticiones de Tetratricopéptidos/genética , Secuencias de Aminoácidos , Proteínas Portadoras , Biología Computacional/métodos , Secuencia Conservada , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Silenciador del Gen , Humanos , Solanum lycopersicum/clasificación , Solanum lycopersicum/metabolismo , Anotación de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Unión Proteica , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...