Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Natl Sci Rev ; 11(8): nwae243, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39171274

RESUMEN

Plastics, fibers and rubber are three mainstream synthetic materials that are essential to our daily lives and contribute significantly to the quality of our lives. The production of the monomers of these synthetic polymers usually involves oxidation or ammoximation reactions of olefins and analogues. However, the utilization of C, O and N atoms in current industrial processes is <80%, which represents the most environmentally polluting processes for the production of basic chemicals. Through innovation and integration of catalytic materials, new reaction pathways, and reaction engineering, the Research Institute of Petroleum Processing, Sinopec Co., Ltd. (RIPP) and its collaborators have developed unique H2O2-centered oxidation/ammoximation technologies for olefins and analogues, which has resulted in a ¥500 billion emerging industry and driven trillions of ¥s' worth of downstream industries. The chemical and engineering bases of the production technologies mainly involve the integration of slurry-bed reactors and microsphere catalysts to enhance H2O2 production, H2O2 propylene/chloropropylene epoxidation for the production of propylene oxide/epichlorohydrin, and integration of H2O2 cyclohexanone ammoximation and membrane separation to innovate the caprolactam production process. This review briefly summarizes the whole process from the acquisition of scientific knowledge to the formation of an industrial production technology by RIPP. Moreover, the scientific frontiers of H2O2 production and related oxidation/ammoximation processes of olefins and analogues are reviewed, and new technological growth points are envisaged, with the aim of maintaining China's standing as a leader in the development of the science and technologies of H2O2 production and utilization.

2.
Angew Chem Int Ed Engl ; : e202410979, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967363

RESUMEN

Catalytic removal of alkynes is essential in industry for producing polymer-grade alkenes from steam cracking processes. Non-noble Ni-based catalysts hold promise as effective alternatives to industrial Pd-based catalysts but suffer from low activity. Here we report embedding of single-atom Pd onto the NiGa intermetallic surface with replacing Ga atoms via a well-defined synthesis strategy to design Pd1-NiGa catalyst for alkyne semi-hydrogenation. The fabricated Pd1Ni2Ga1 ensemble sites deliver remarkably higher specific mass activity under superb alkene selectivity of >96 % than the state-of-the-art catalysts under industry-relevant conditions. Integrated experimental and computational studies reveal that the single-atom Pd synergizes with the neighbouring Ni sites to facilitate the σ-adsorption of alkyne and dissociation of hydrogen while suppress the alkene adsorption. Such synergistic effects confer the single-atom Pd on the NiGa intermetallic with a Midas touch for alkyne semi-hydrogenation, providing an effective strategy for stimulating low active Ni-based catalysts for other selective hydrogenations in industry.

3.
Chem Commun (Camb) ; 60(60): 7737-7740, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38973454

RESUMEN

We demonstrate a simple method for preparing highly active Au/TS-1 catalysts for propylene hydro-oxidation, which involves sequentially impregnating HAuCl4 and Cs2CO3 solutions onto TS-1. The Au/TS-1 catalysts synthesized by this method exhibit high Au uptake efficiency (∼100%), high dispersion of Au nanoparticles and superior activity.

4.
ACS Catal ; 14(9): 7157-7165, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38721382

RESUMEN

With heterogeneous catalysts, chemical promotion takes place at their surfaces. Even in the case of single-atom alloys, where small quantities of a reactive metal are dispersed within the main host, it is assumed that both elements are exposed and available to bond with the reactants. Here, we show, on the basis of in situ X-ray absorption spectroscopy data, that in alloy catalysts made from Pt highly diluted in Cu the Pt atoms are located at the inner interface between the metal nanoparticles and the silica support instead. Kinetic experiments indicated that these catalysts still display better selectivity for the hydrogenation of unsaturated aldehydes to unsaturated alcohols than the pure metals. Density functional theory calculations corroborated the stability of Pt at the metal-support interface and explained the catalytic performance as being due to a remote lowering of the activation barrier for the dissociation of H2 at Cu sites by the internal Pt atoms.

5.
Nat Commun ; 15(1): 3249, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627484

RESUMEN

The development of sustainable and anti-poisoning single-atom catalysts (SACs) is essential for advancing their research from laboratory to industry. Here, we present a proof-of-concept study on the poisoning of Au SACs, and the antidote of Au nanoparticles (NPs), with trace addition shown to reinforce and sustain propylene epoxidation. Multiple characterizations, kinetics investigations, and multiscale simulations reveal that Au SACs display remarkable epoxidation activity at a low propylene coverage, but become poisoned at higher coverages. Interestingly, Au NPs can synergistically cooperate with Au SACs by providing distinct active sites required for H2/O2 and C3H6 activations, as well as hydroperoxyl radical to restore poisoned SACs. The difference in reaction order between C3H6 and H2 (nC3H6-nH2) is identified as the descriptor for establishing the volcano curves, which can be fine-tuned by the intimacy and composition of SACs and NPs to achieve a rate-matching scenario for the formation, transfer, and consumption of hydroperoxyl. Consequently, only trace addition of Au NPs antidote (0.3% ratio of SACs) stimulates significant improvements in propylene oxide formation rate, selectivity, and H2 efficiency compared to SACs alone, offering a 56-fold, 3-fold, and 22-fold increase, respectively, whose performances can be maintained for 150 h.

6.
J Am Chem Soc ; 146(7): 4993-5004, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38333965

RESUMEN

Alkyne hydrogenation on palladium-based catalysts modified with silver is currently used in industry to eliminate trace amounts of alkynes in alkenes produced from steam cracking and alkane dehydrogenation processes. Intensive efforts have been devoted to designing an alternative catalyst for improvement, especially in terms of selectivity and catalyst cost, which is still far away from that as expected. Here, we describe an atomic design of a high-performance Ni-based intermetallic catalyst aided by active machine learning combined with density functional theory calculations. The engineered NiIn catalyst exhibits >97% selectivity to ethylene and propylene at the full conversion of acetylene and propyne at mild temperature, outperforming the reported Ni-based catalysts and even noble Pd-based ones. Detailed mechanistic studies using theoretical calculations and advanced characterizations elucidate that the atomic-level defined coordination environment of Ni sites and well-designed hybridization of Ni 3d with In 5p orbital determine the semihydrogenation pathway.

7.
Angew Chem Int Ed Engl ; 63(1): e202314288, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37988201

RESUMEN

Methanol serves as a versatile building-block for various commodity chemicals, and the development of industrially promising strategies for its conversion remains the ultimate goal in methanol chemistry. In this study, we design a dual Cu-Cs catalytic system that enables a one-step direct conversion of methanol and methyl acetate/ethanol into high value-added esters/aldehydes, with customized chain length and saturation by leveraging the proximity and distribution of Cu-Cs sites. Cu-Cs at a millimeter-scale intimacy triggers methanol dehydrogenation and condensation, involving proton transfer, aldol formation, and aldol condensation, to obtain unsaturated esters and aldehydes with selectivities of 76.3 % and 31.1 %, respectively. Cu-Cs at a micrometer-scale intimacy significantly promotes mass transfer of intermediates across catalyst interfaces and their subsequent hydrogenation to saturated esters and aldehydes with selectivities of 67.6 % and 93.1 %, respectively. Conversely, Cu-Cs at a nanometer-scale intimacy alters reaction pathway with a similar energy barrier for the rate-determining step, but blocks the acidic-basic sites and diverts the reaction to byproducts. More importantly, an unprecedented quadruple tandem catalytic production of methyl methacrylate (MMA) is achieved by further tailoring Cu and Cs distribution across the reaction bed in the configuration of Cu-Cs||Cs, outperforming the existing industrial processes and saving at least 15 % of production costs.

8.
Chem Soc Rev ; 52(12): 3991-4005, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37278085

RESUMEN

Surface barriers to mass transfer in various nanoporous materials have been increasingly identified. These past few years especially, a significant impact on catalysis and separations has come to light. Broadly speaking, there are two types of barriers: internal barriers, which affect intraparticle diffusion, and external barriers, which determine the uptake and release rates of molecules into and out of the material. Here, we review the literature on surface barriers to mass transfer in nanoporous materials and describe how the existence and influence of surface barriers has been characterized, aided by molecular simulations and experimental measurements. As this is a complex, evolving research topic, without consensus from the scientific community at the time of writing, we present various current viewpoints, not always in agreement, on the origin, nature, and function of such barriers in catalysis and separation. We also emphasize the need for considering all the elementary steps of the mass transfer process in optimally designing new nanoporous and hierarchically structured adsorbents and catalysts.

9.
Angew Chem Int Ed Engl ; 62(19): e202301024, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36912609

RESUMEN

Polyethylene terephthalate (PET) hydrogenolysis can produce benzene, toluene, and xylene (BTX), where the selectivity control is challenging. We report a reaction pathway dictated by the Ru coordination environment by examining the binding geometries of adsorbates on differently coordinated Ru centers and their evolution during PET hydrogenolysis. A BTX yield of 77 % was obtained using a Ru/TiO2 with a Ru coordination number of ca. 5.0 where edge/corner sites are dominant, while more gas and saturated products were formed for Ru/TiO2 containing primarily terrace sites. Density functional theory and isotopic labelling revealed that under-coordinated Ru edge sites favor "upright" adsorption of aromatic adsorbates while well-coordinated Ru sites favor "flat-lying" adsorption, where the former mitigates ring hydrogenation and opening. This study demonstrates that reaction pathways can be directed through controlled reactant/intermediate binding via tuning of the Ru coordination environment for efficient conversion of PET to BTX.

10.
Chemosphere ; 327: 138536, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36990356

RESUMEN

In this work, 3D particle-resolved CFD simulations have been performed to investigate the thermal effects of natural gas production from coke oven gas. The catalyst packing structures with uniform, gradient rise and gradient descent distribution and the operating conditions of pressure, wall temperature, inlet temperature and feed velocity are optimized for reduced hot spot temperature. The simulation results show that compared with packing structures with uniform distribution and gradient descent distribution, the gradient rise distribution could effectively reduce the hot spot temperature without affecting the reactor performance in the reactor with upflow reactants feeding, of which the reactor bed temperature rise is 37 K. Under the conditions with the pressure of 20 bar, wall temperature of 500 K, inlet temperature of 593 K, inlet flow rate of 0.04 m/s, the packing structure with gradient rise distribution exhibits the minimum reactor bed temperature rise of 19 K. By optimizing the catalyst distribution and operation conditions, the hot spot temperature of CO methanation process could be dramatically reduced by 49 K at the sacrifice of slightly reduced CO conversion.


Asunto(s)
Coque , Gas Natural , Temperatura , Calor , Simulación por Computador
11.
J Chem Phys ; 157(23): 234706, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36550054

RESUMEN

The effect of gases on the surface composition of Cu-Pt bimetallic catalysts has been tested by in situ infrared (IR) and x-ray absorption spectroscopies. Diffusion of Pt atoms within the Cu-Pt nanoparticles was observed both in vacuum and under gaseous atmospheres. Vacuum IR spectra of CO adsorbed on CuPtx/SBA-15 catalysts (x = 0-∞) at 125 K showed no bonding on Pt regardless of Pt content, but reversible Pt segregation to the surface was seen with the high-Pt-content (x ≥ 0.2) samples upon heating to 225 K. In situ IR spectra in CO atmospheres also highlighted the reversible segregation of Pt to the surface and its diffusion back into the bulk when cycling the temperature from 295 to 495 K and back, most evidently for diluted single-atom alloy catalysts (x ≤ 0.01). Similar behavior was possibly observed under H2 using small amounts of CO as a probe molecule. In situ x-ray absorption near-edge structure data obtained for CuPt0.2/SBA-15 under both CO and He pointed to the metallic nature of the Pt atoms irrespective of gas or temperature, but analysis of the extended x-ray absorption fine structure identified a change in coordination environment around the Pt atoms, from a (Pt-Cu):(Pt-Pt) coordination number ratio of ∼6:6 at or below 445 K to 8:4 at 495 K. The main conclusion is that Cu-Pt bimetallic catalysts are dynamic, with the composition of their surfaces being dependent on temperature in gaseous environments.

12.
Acc Chem Res ; 55(22): 3230-3241, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36321554

RESUMEN

Heterogeneous catalysis is the workhorse of the chemical industry, and a heterogeneous catalyst possesses numerous active sites working together to drive the conversion of reactants to desirable products. Over the decades, much focus has been placed on identifying the factors affecting the active sites to gain deep insights into the structure-performance relationship, which in turn guides the design and preparation of more active, selective, and stable catalysts. However, the molecular-level interplay between active sites and catalytic function still remains qualitative or semiquantitative, ascribed to the difficulty and uncertainty in elucidating the nature of active sites for its controllable manipulation. Hence, bridging the microscopic properties of active sites and the macroscopic catalytic performance, that is, microscopic-to-macroscopic transition, to afford a quantitative description is intriguing yet challenging, and progress toward this promises to revolutionize catalyst design and preparation.In this Account, we propose mesokinetics modeling, for the first time enabling a quantitative description of active site characteristics and the related mechanistic information, as a versatile tool to guide rational catalyst design. Exemplified by a pseudo-zero-order reaction, the kinetics derivation from the Pt particle size-sensitive catalytic activity and size-insensitive activation energy suggests only one type of surface site as the dominant active site, in which the Pt(111) with almost unchanged turnover frequency (TOF111) is further identified as the dominating active site. Such a method has been extended to identify and quantify the number (Ni) of active sites for various thermo-, electro-, and photocatalysts in chemical synthesis, hydrogen generation, environment application, etc. Then, the kinetics derivation from the kinetic compensation effects suggests a thermodynamic balance between the activation entropy and enthalpy, which exhibit linear dependences on Pt charge. Accordingly, the Pt charge can serve as a catalytic descriptor for its quantitative determination of TOFi. This strategy has been further applied to Pt-catalyzed CO oxidation with nonzero-order reaction characteristic by taking the site coverages of surface species into consideration.Hence, substituting the above statistical correlations of Ni and TOFi into the rate equation R = ∑Ni × TOFi offers the mesokinetics model, which can precisely predict catalytic function and screen catalysts. Finally, based on the disentanglement of the factors underlying Pt electronic structures, a de novo strategy, from the interfacial charge distribution to reaction mechanism, kinetics, and thermodynamics parameters of the rate-determining step, and ultimately catalytic performance, is developed to map the unified mechanistic and kinetics picture of reaction. Overall, the mesokinetics not only demonstrates much potential to elucidate the quantitative interplay between active sites and catalytic activity but also provides a new research direction in kinetics analysis to rationalize catalyst design.


Asunto(s)
Catálisis , Cinética , Tamaño de la Partícula , Termodinámica , Oxidación-Reducción
13.
Angew Chem Int Ed Engl ; 61(51): e202215225, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36269685

RESUMEN

Precisely tailoring the distance between adjacent metal sites to match adsorption configurations of key species for the targeted reaction pathway is a great challenge in heterogeneous catalysis. Here, we report a proof-of-concept study on the atomically sites-tailored pathway in Pd-catalyzed acetylene hydrogenation, i.e., increasing the distance of adjacent Pd atoms (dPd-a-Pd ) for configuration matching in acetylene semi-hydrogenation against coupling. dPd-a-Pd is identified as a structural descriptor for describing the competitiveness for reaction pathways, and the increased dPd-a-Pd prefers the semi-hydrogenation pathway due to simultaneously promoted C2 H4 desorption and the destabilized transition state of the C2 H3 * coupling. Spectroscopic, kinetics and electronic structure studies reveal that increasing dPd-a-Pd to 3.31 Šdelivers superior selectivity and stability due to energy matching and appropriate hybridization of Pd 4d with In 2s and, especially, 2p orbitals.

14.
ACS Omega ; 7(35): 30773-30781, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36092619

RESUMEN

The kinetic effects of co-feeding of dimethyl disulfide (DMDS) and hydrogen on propane dehydrogenation (PDH) over the Pt-Sn-K/Al2O3 catalyst were investigated by the response surface method. The 3-level Box-Behnken design for 4 factors (reaction temperature, propene, hydrogen, and DMDS flow rate) was used to design the experiment. The initial propane conversion, propene selectivity, and coking amount were chosen as responses and the results were fitted by quadratic models. The fresh and coked catalysts were characterized by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDS), thermogravimetry (TG), N2 physisorption, and Fourier-transform infrared spectroscopy (FT-IR). Analysis of variance (ANOVA) results showed that the DMDS flow rate is significant for propane conversion and coking amount while hydrogen flow rate is only significant for the conversion. By using the fitted model for the response surface, it is found that DMDS can significantly reduce the coking amount at the expense of propane conversion, and hydrogen weakly affects the selectivity and coking amount. The optimal conditions to achieve maximum conversion and selectivity and minimum coking amount are not consistent. The DMDS and hydrogen flow rate should be optimized to obtain the maximum economic profit out of the propane dehydrogenation (PDH) process.

15.
Nat Commun ; 13(1): 5534, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36131070

RESUMEN

Mechanism driven catalyst design with atomically uniform ensemble sites is an important yet challenging issue in heterogeneous catalysis associated with breaking the activity-selectivity trade-off. Herein, a trimer Ni1Sb2 site in NiSb intermetallic featuring superior selectivity is elaborated for acetylene semi-hydrogenation via a theoretical guidance with a precise synthesis strategy. The trimer Ni1Sb2 site in NiSb intermetallic is predicted to endow acetylene reactant with an adequately but not excessively strong σ-adsorption mode while ethylene product with a weak π-adsorption one, where such compromise delivers higher ethylene formation rate. An in-situ trapping of molten Sb by Ni strategy is developed to realize the construction of Ni1Sb2 site in the intermetallic P63/mmc NiSb catalysts. Such catalyst exhibits ethylene selectivity up to 93.2% at 100% of acetylene conversion, significantly prevailing over the referred Ni catalyst. These insights shed new lights on rational catalyst design by taming active sites to energetically match targeted reaction pathway.

16.
Angew Chem Int Ed Engl ; 61(16): e202200190, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35132761

RESUMEN

Carbon monoxide (CO) is notorious for its strong adsorption to poison platinum group metal catalysts in the chemical industry. Here, we conceptually distinguish and quantify the effects of the occupancy and energy of d electrons, emerging as the two vital factors in d-band theory, for CO poisoning of Pt nanocatalysts. The stepwise defunctionalization of carbon support is adopted to fine-tune the 5d electronic structure of supported Pt nanoparticles. Excluding other promotional mechanisms, the increase of Pt 5d band energy strengthens the competitive adsorption of hydrogen against CO for the preferential oxidation of CO, affording the scaling relationship between Pt 5d band energy and CO/H2 adsorption energy difference. The decrease of Pt 5d band occupancy lowers CO site coverage to promote its association with oxygen for the total oxidation of CO, giving the scaling relationship between Pt 5d occupancy and activation energy. The above insights outline a molecular-level understanding of CO poisoning.

17.
Chem Commun (Camb) ; 58(16): 2694-2697, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35108723

RESUMEN

Glycerol hydrogenolysis to 1,3-propanediol is identified to follow the dehydration-hydrogenation pathway with the rate-determining step (RDS) of H* + OH* → H2O* over an IrRe catalyst. The positive effects of solid acids are elucidated to originate from the reduced energy barrier of the RDS by H protons, while the negative ones of liquid acids are from excessively strong adsorption of anions.

18.
Int J Pharm ; 613: 121394, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34933081

RESUMEN

Lenalidomide (LDM), widely used for the treatment of transfusion-dependent anaemia, has low oral bioavailability due to its poor aqueous solubility. Herein, we selected nicotinamide (NIC) as a coformer and synthesized a novel pharmaceutical cocrystal: lenalidomide-nicotinamide cocrystal (LNC) with a 1:1 stoichiometric ratio for enhancing the physicochemical properties of LDM, such as solubility and stability. For evaluating the ability to form cocrystal of LDM and NIC, a model of hydrogen-bond propensity (HBP) was utilized to calculate the hydrogen bond formation possibility for every hydrogen bond pair based on theexisting structuralinformation in the database. Afterward, solid-state grinding and liquid-assisted grinding methods were conducted to synthesize LNC, which were then characterized using powder X-ray diffraction, thermal and spectroscopic analysis. Besides, in the heating process, an interesting and anomalous phenomenon called thermal phase transition of the cocrystal was firstly observed and visualized by the hot stage microscope. Notably, the second thermal stage controlled by the vapor pressure of NIC was further determined experimentally and theoretically, which means that intermolecular hydrogen bonds gradually break when NIC occurs phase transition (from liquid to gas). Further, the physicochemical stability of cocrystal was proved reliable after being tested under accelerated stability conditions of 40 °C/75% RH for one month. Compared to lenalidomide and their physical mixture (molar ratio of 1:1), the dissolution and solubility of LNC have also been improved.


Asunto(s)
Niacinamida , Preparaciones Farmacéuticas , Cristalización , Lenalidomida , Solubilidad
19.
Nat Commun ; 12(1): 6888, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824271

RESUMEN

A molecular-level understanding of how the electronic structure of metal center tunes the catalytic behaviors remains a grand challenge in heterogeneous catalysis. Herein, we report an unconventional kinetics strategy for bridging the microscopic metal electronic structure and the macroscopic steady-state rate for CO oxidation over Pt catalysts. X-ray absorption and photoelectron spectroscopy as well as electron paramagnetic resonance investigations unambiguously reveal the tunable Pt electronic structures with well-designed carbon support surface chemistry. Diminishing the electron density of Pt consolidates the CO-assisted O2 dissociation pathway via the O*-O-C*-O intermediate directly observed by isotopic labeling studies and rationalized by density-functional theory calculations. A combined steady-state isotopic transient kinetic and in situ electronic analyses identifies Pt charge as the kinetics indicators by being closely related to the frequency factor, site coverage, and activation energy. Further incorporation of catalyst structural parameters yields a novel model for quantifying the electronic effects and predicting the catalytic performance. These could serve as a benchmark of catalyst design by a comprehensive kinetics study at the molecular level.

20.
Micromachines (Basel) ; 12(8)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34442505

RESUMEN

Based on the split-and-recombine principle, a millimeter-scale butterfly-shaped microreactor was designed and fabricated through femtosecond laser micromachining. The velocity fields, streamlines and pressure fields of the single-phase flow in the microreactor were obtained by a computational fluid dynamics simulation, and the influence of flow rates on the homogeneous mixing efficiency was quantified by the mixing index. The flow behaviors in the microreactor were investigated using water and n-butanol, from which schematic diagrams of various flow patterns were given and a flow pattern map was established for regulating the flow behavior via controlling the flow rates of the two-phase flow. Furthermore, effects of the two-phase flow rates on the droplet flow behavior (droplet number, droplet size and standard deviation) in the microreactor were investigated. In addition, the interfacial mass transfer behaviors of liquid-liquid flow were evaluated using the standard low interfacial tension system of "n-butanol/succinic acid/water", where the dependence between the flow pattern and mass transfer was discussed. The empirical relationship between the volumetric mass transfer coefficient and Reynold number was established with prediction error less than 20%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA