Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Se Pu ; 41(9): 771-780, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37712541

RESUMEN

Khat is a common plant that grows primarily in Eastern Africa and the Arabian Peninsula. Cathinone, norpseudoephedrine, and norephedrine are the main psychoactive components of khat. Experimental studies have shown that red and green khat have similar cathinone contents, but green khat contains more norpseudoephedrine and norephedrine than red khat. Research indicates that Ethiopians believe that red khat has stronger psychoactive effects than green khat. Therefore, we speculated that other substances in red khat may enhance its psychoactive effects. Using the sampling method, we identified two other psychoactive components in khat: methcathinone and ethcathinone. At present, only a few studies on the extraction and detection of alkaloids from khat have been published in China, and no reports on the extraction and detection of methcathinone and ethcathinone from khat are available. In this study, we established an extraction and detection method for five alkaloids in dried khat using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF MS). To establish the extraction method, we optimized the extraction solvent and process. The amounts of dichloromethane and sodium hydroxide added during the purification step were also optimized. To establish the detection method, we optimized the chromatographic and MS conditions. The final extraction and detection method was as follows: Dried khat powder (0.1 g) was loaded into a polypropylene centrifuge tube, added with 1 mL of 0.05 mol/L hydrochloride aqueous solution, and vortex-oscillated for 3 min for extraction. The sample was centrifuged at 10000 r/min for 3 min. Next, 600 µL of the supernatant was placed in a centrifuge tube, added with 1 mL of dichloromethane, shaken for 1 min, and centrifuged at 10000 r/min for 3 min. Subsequently, 300 µL of the supernatant was placed in a centrifuge tube, added with 80 µL of 1 mol/L sodium hydroxide aqueous solution, shaken for 1 min, and added with 1 mL of acetonitrile. Vortex oscillation was performed for 2 min to extract the sample, after which solid sodium chloride (0.4 g) was added to the mixture, followed by shaking for 1 min to separate the acetonitrile and aqueous phases. The mixture was then centrifuged at 10000 r/min for 3 min. Finally, the supernatant was collected and diluted for further testing. The five target analytes were separated on a ZORBAX Eclipse Plus Phenyl-Hexyl column (100 mm×3.0 mm, 1.8 µm) via gradient elution using 0.1% acetic acid aqueous solution and acetonitrile as mobile phases with a flow rate of 0.3 mL/min and column temperature of 30 ℃. The analytes were identified using the targeted MS/MS method under positive electrospray ionization mode and quantified using the external standard method. The five alkaloids showed good correlations (all correlation coefficients (r2)≥0.9976) with their respective linear ranges. The limits of detection were between 0.08 and 0.75 µg/L, and the limits of quantification were between 0.25 and 2.50 µg/L. The average recoveries of the five alkaloids from two plants with different alkaloid contents were between 90.7% and 105.2%. The intra-sample precision ranged from 0.5% to 2.3%, the intra-day precision was between 1.0% and 2.5%, and the inter-day precision was between 1.3% and 3.3%. Using the developed method, we extracted and analyzed 15 khat samples, and detected five alkaloids. This method enables rapid sample pretreatment and has high sensitivity, good stability, and suitable accuracy. Based on the above results, we conclude that the proposed method meets the inspection and identification requirements for khat. Thus, it can provide a valuable reference for the physical and chemical identification of khat and support for further studies on its psychoactive components.


Asunto(s)
Alcaloides , Espectrometría de Masas en Tándem , Humanos , Catha , Cromatografía Líquida de Alta Presión , Cloruro de Metileno , Hidróxido de Sodio , Acetonitrilos
2.
J Agric Food Chem ; 71(26): 10133-10143, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37350414

RESUMEN

Linalool, a plant-derived high-value monoterpene, is widely used in the perfume, cosmetic, and pharmaceutical industries. Recently, engineering microbes to produce linalool has become an attractive alternative to plant extraction or chemical synthesis approaches. However, the low catalytic activity of linalool synthase and the shortage of precursor pools have been considered as two key factors for low yields of linalool. In this study, we rationally engineered the entrance of the substrate-binding pocket of linalool synthase (t67OMcLISM) and successfully increased the catalytic efficiency of this enzyme toward geranyl pyrophosphate. Specifically, F447E and F447A, with decreased entrance hydrophobicity and steric hindrance, increased linalool production by 2.2 and 1.9 folds, respectively. Subsequently, cytoplasm and peroxisomes were harnessed to boost linalool synthesis in Saccharomyces cerevisiae, achieving a high titer of linalool (219.1 mg/L) in shake-flask cultivation. Finally, the engineered diploid strain produced 2.6 g/L of linalool by 5 L fed-batch fermentation, which was the highest production in yeast to date. The protein engineering and biosynthetic pathway compartmentalization in the peroxisome provide references for the microbial production of other monoterpenes.


Asunto(s)
Monoterpenos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Monoterpenos Acíclicos/metabolismo , Monoterpenos/metabolismo , Proteínas/metabolismo , Orgánulos/metabolismo , Ingeniería Metabólica
3.
J Agric Food Chem ; 70(16): 5077-5087, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35416041

RESUMEN

Rosmarinic acid as a polyphenolic compound has great values in the pharmaceutical, cosmetic, and food industries. To achieve efficient biosynthesis of rosmarinic acid, the major obstacles such as imbalanced metabolic flux among branching pathways and substrate promiscuity of pathway enzymes should be eliminated. Here, a rosmarinic acid producing Saccharomyces cerevisiae strain was constructed by introducing codon optimized d-lactate dehydrogenase gene mutant (OD-LDHY52A), 4-coumarate CoA ligase gene (OPc4CL2), and rosmarinic acid synthase gene (OMoRAS) into a previously constructed caffeic acid hyper-producer. To identify the metabolic bottleneck, the substrate specificity of OPc4CL2 and OMoRAS was figured out by bioconversion experiments and HPLC-MS/MS analysis. Subsequently, the byproducts formation was alleviated by removing prephenate dehydratase and tuning down the expression level of OPc4CL2. The final strain YRA113-15B produced 208 mg/L rosmarinic acid in a shake-flask culture (a 63-fold improvement over the initial strain), which was the highest rosmarinic acid titer by engineered microbial cells reported to date. This work provides a promising platform for fermentative production of rosmarinic acid and offers a strategy to overcome the intrapathway competition.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cinamatos , Depsidos , Ingeniería Metabólica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometría de Masas en Tándem , Ácido Rosmarínico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...