Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 22(13): 5158-5166, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35762802

RESUMEN

Photoacoustic (PA) imaging uses photon-phonon conversion for high-resolution tomography of biological tissues and functions. Exogenous contrast agents are often added to improve the image quality, but the interference from endogenous molecules diminishes the imaging sensitivity and specificity. We report a background-free PA imaging technique based on the active modulation of PA signals via magnetic alignment of Fe3O4@Au hybrid nanorods. Switching the field direction creates enhanced and deactivated PA imaging modalities, enabling a simple pixel subtraction to effectively minimize background noises. Under an alternating magnetic field, the nanorods exhibit PA signals of coherently periodic changes that can be converted into a sharp peak in a frequency domain via the fast Fourier transform. Automatic pixel-wise screening of nanorod signals performed using a computational algorithm across a time-sequence set of PA images regenerates a background-free PA image with significantly improved contrast, specificity, and fidelity.


Asunto(s)
Nanotubos , Técnicas Fotoacústicas , Análisis de Fourier , Oro , Campos Magnéticos
2.
Biomaterials ; 284: 121482, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35358870

RESUMEN

Fracture is one of the most common clinical diseases that reduce the quality of patients' lives significantly. In this study, we prepared gold nanorods modified by endogenous proteins which collected from the autologous blood of individual mice for enhanced photothermal therapy (PTT) to treat fracture. Due to the outermost layer being endogenous proteins, we find that GNRs neither activate the immune cells in vitro nor cause any rejection immune responses after entering the body as compared with PEG modification. In addition, the internal bleeding and edema of the fracture site result in a rapid enrichment of GNRs after intravenous injection. Under near infrared (NIR) light irradiation, the mild photothermal effect of the accumulated GNRs can effectively promote healing of fracture in mice. The molecular mechanism of osteogenic capability is revealed by transcriptome sequencing and subsequent confirmatory experiments, indicating enhanced two key osteogenic signal transduction (MAPK, PI3K-Akt) and multiple key osteogenesis related factors expression following the treatment. Our strategy offers an alternative way to promote bone regeneration following a fracture.


Asunto(s)
Oro , Nanotubos , Animales , Línea Celular Tumoral , Oro/uso terapéutico , Humanos , Ratones , Osteogénesis , Fosfatidilinositol 3-Quinasas , Fototerapia , Transducción de Señal
3.
Adv Drug Deliv Rev ; 182: 114107, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34995678

RESUMEN

Cancer nanovaccines as one of immunotherapeutic approaches are able to attack tumors by stimulating tumor-specific immunological responses. However, there still exist multiple challenges to be tackled for cancer nanovaccines to evoke potent antitumor immunity. Particularly, the administration of exogenous materials may cause the off-target immunotherapy responses. In recent years, biomimetic nanovaccines by using cell lysates, cell-derived nanovesicles, or extracted cell membranes as the functional components have received extensive attention. Such nanovaccines based on cell-derived components would show many unique advantages including inherent biocompatibility and the ability to trigger immune responses against a range of tumor-associated antigens. In this review article, we will introduce the recent research progresses of those cell-derived biomimetic nanovaccines for cancer immunotherapy, and discuss the perspectives and challenges associated with the future clinical translation of these emerging vaccine platforms.


Asunto(s)
Biomimética/métodos , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/inmunología , Sistema de Administración de Fármacos con Nanopartículas/química , Neoplasias/tratamiento farmacológico , Presentación de Antígeno/inmunología , Antígenos de Neoplasias/inmunología , Células Sanguíneas/metabolismo , Ensayos Clínicos como Asunto , Humanos
4.
Biomaterials ; 271: 120724, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33636549

RESUMEN

Hydrogels are widely used for drug delivery and tissue engineering. Here we developed a simple injectable red blood cells (RBCs)-based gel for cancer photo-immunotherapy. We find that subcutaneous injected homologous RBCs could form hydrogel-like composition in mice, due to the infiltrated platelets and thrombin under physiological environment. In addition, the formed RBC-gel has photothermal effect under NIR laser exposure on account of deep reddish color. In mice bearing CT26 tumors, we demonstrate photo-immunotherapy of cancer by local injection of imiquimod (R837) adjuvant engineered RBCs. The photothermal effect of the in situ formed RBC-gel effectively burns tumor to release tumor-associated antigens (TAAs), promotes the release of R837 from RBCs to the tumor draining lymph node, thereby activating the lymph node-resident antigen-presenting cells (APCs) remarkably. A durable systemic immune response is induced following the combination treatment of the primary tumor. 100% mice rejected tumor rechallenge and are survived at least 250 days without any detectable tumors. Our strategy highlights the RBCs, the most common type of cell in our blood, as the hydrogel for drug delivery and cancer photo-immunotherapy.


Asunto(s)
Inmunoterapia , Neoplasias , Animales , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Eritrocitos , Hidrogeles , Ratones , Neoplasias/terapia
5.
Nano Lett ; 21(3): 1228-1237, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33522825

RESUMEN

Vaccines are one of utmost important weapons in modern medicine to fight a wide range of diseases. To achieve optimal vaccination effects, repeated injections of vaccines are often required, which would largely decrease patient comfort. Herein, an ultrasound-responsive self-healing hydrogel system loaded with nanovaccines is designed for remotely controlled tumor vaccine release and individualized cancer immunotherapy. The gel could be transformed into sol status in response to ultrasound treatment, allowing a burst release of nanovaccines, and self-healed to gel afterward. For mice with a single subcutaneous injection of nanovaccine-loaded gel and multiple ultrasound treatments, repeatedly released nanovaccines could elicit antitumor immune responses, which in combination with immune checkpoint blockade could effectively inhibit established tumors, and prevent postoperative tumor metastases and recurrence based on our personalized nanovaccine system. This work presents an easy-to-operate strategy to realize controllable and durable delivery of vaccines against cancer and potentially other types of diseases.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Animales , Hidrogeles , Inmunoterapia , Ratones , Neoplasias/tratamiento farmacológico , Vacunación
6.
Adv Healthc Mater ; 10(3): e2001208, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33236504

RESUMEN

Sonodynamic therapy (SDT) by utilizing ultrasonic waves triggers the generation of reactive oxygen species (ROS) with the help of sonosensitizers to destruct deep-seated tumors has attracted great attention. However, the efficacy of SDT may not be robust enough due to the insufficient oxygen supply within solid tumors. Additionally, repeated injections and treatments, which are often required to achieve the optimal therapeutic responses, may cause additional side effects and patient incompliance. Herein, a thermo-triggered in situ hydrogel system is developed in which catalase (CAT) conjugated with sonosensitizer meso-tetra (4-carboxyphenyl) porphine (TCPP) is mixed into chitosan (CS) and beta-glycerol phosphate disodium (GP) to form the precursor solution. After injection of the precursor solution into tumors, the in situ sol-gel transformation will occur as triggered by the body temperature, resulting in the localized tumor retention of TCPP-CAT. The locally restrained TCPP-CAT not only produces ROS under ultrasonic treatment, but also sustainably reverses the oxygen-deficient status in solid tumors by triggering the O2 generation from the decomposition of endogenous H2 O2 , further promoting the efficacy of SDT. As a result, the repeated SDT after a single dose injection of such a hydrogel can offer robust treatment effects to effectively eradicate tumors.


Asunto(s)
Quitosano , Neoplasias , Terapia por Ultrasonido , Humanos , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno , Ondas Ultrasónicas
7.
Nanomicro Lett ; 12(1): 100, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-34138094

RESUMEN

Radiotherapy (RT) is a widely used way for cancer treatment. However, the efficiency of RT may come with various challenges such as low specificity, limitation by resistance, high dose and so on. Nitric oxide (NO) is known a very effective radiosensitizer of hypoxic tumor. However, NO cannot circulate in body with high concentration. Herein, an NIR light-responsive NO delivery system is developed for controlled and precisely release of NO to hypoxic tumors during radiotherapy. Tert-Butyl nitrite, which is an efficient NO source, is coupled to Ag2S quantum dots (QDs). NO could be generated and released from the Ag2S QDs effectively under the NIR irradiation due to the thermal effect. In addition, Ag is also a type of heavy metal that can benefit the RT therapy. We demonstrate that Ag2S NO delivery platforms remarkably maximize radiotherapy effects to inhibit tumor growth in CT26 tumor model. Furthermore, immunosuppressive tumor microenvironment is improved by our NO delivery system, significantly enhancing the anti-PD-L1 immune checkpoint blockade therapy. 100% survival rate is achieved by the radio-immune combined therapy strategy based on the Ag2S NO delivery platforms. Our results suggest the promise of Ag2S NO delivery platforms for multifunctional cancer radioimmunotherapy.

8.
Nano Lett ; 19(11): 8109-8117, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31597418

RESUMEN

Photoacoustic (PA) imaging based on the photon-to-ultrasound conversion allows the imaging of optical absorbers in deep tissues with high spatial resolution. However, the inherent optical absorbance of biomolecules (e.g., hemoglobin, melanin, etc.) would show up as tissue background signals to interfere with signals from the contrast agent during in vivo PA imaging, limiting the imaging sensitivity. Herein, an ultrasound (US)-responsive PA imaging probe based on microbubbles (MBs) containing gold nanoparticles (Au NPs) is designed for in vivo "background-free" PA imaging. The obtained Au@lip MBs with separated Au NPs decorated within the lipid shell of MBs show low PA signals under near-infrared (NIR) excitation. Interestingly, under exposure to US pulses, those Au@lip MBs would burst to form nanoscale aggregates of Au@lip NPs, which exhibit significantly enhanced NIR PA signals due to their red-shifted surface plasmon resonance. Therefore, by subtracting the PA image captured pre-US burst from that captured post-US burst, the tissue background PA signals could be deducted to enable background-free PA imaging with high sensitivities as demonstrated by multiple ex vivo and in vivo experiments. This work presents a simple yet effective strategy to deduct background signals during PA imaging, which is promising for accurate PA detection of targets in tissues with a strong background.

9.
Adv Mater ; 31(24): e1900927, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31012164

RESUMEN

Photodynamic therapy (PDT) has shown the potential of triggering systemic antitumor immune responses. However, while the oxygen-deficient hypoxic tumor microenvironment is a factor that limits the PDT efficacy, the immune responses after conventional PDT usually are not strong enough to eliminate metastatic tumors. Herein, a light-triggered in situ gelation system containing photosensitizer-modified catalase together with poly(ethylene glycol) double acrylate (PEGDA) as the polymeric matrix is designed. Immune adjuvant nanoparticles are further introduced into this system to trigger robust antitumor immune responses after PDT. Following local injection of the mixed precursor solution into tumors and the subsequent light exposure, polymerization of PEGDA can be initiated to induce in situ gelation. Such hybrid hydrogel with long-term tumor retention of various agents and the ability to enable persistent tumor hypoxia relief can enable multiple rounds of PDT, which results in significantly enhanced immune responses by multiround stimulation. Further combination of such gel-based multiround PDT with anticytotoxic T-lymphocyte antigen-4 checkpoint blockade offers not only the abscopal effect to inhibit growth of distant tumors but also effective long-term immune memory protection from rechallenged tumors. Therefore, such a light-triggered in situ gelation system by a single-dose injection can enable greatly enhanced photoimmunotherapy by means of repeated stimulations.


Asunto(s)
Inmunoterapia/métodos , Luz , Fotoquimioterapia/métodos , Animales , Línea Celular Tumoral , Geles , Ratones , Modelos Moleculares , Conformación Molecular , Polietilenglicoles/química , Polietilenglicoles/uso terapéutico
10.
ACS Nano ; 12(9): 9412-9422, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30148960

RESUMEN

Brachytherapy by the placing of therapeutic radioactive materials into or near tumors has been widely used in a clinical setting for cancer treatment. The efficacy of brachytherapy, however, may often be limited by the radiation resistance for tumor cells located in the hypoxic region of a solid tumor as well as the non-optimal distribution of radioactivity inside the tumor. Herein, a hybrid hydrogel system is developed by using 131I-labeled copper sulfide (CuS/131I) nanoparticles as the photothermal- and radiotherapeutic agent, poly(ethylene glycol) double acrylates (PEGDA) as the polymeric matrix, and 2,2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH) as the thermal initiator to realize light-induced in situ gelation in the tumor for the combined photothermal brachytherapy. After local injection, CuS/131I nanoparticles under irradiation by the 915 nm near-infrared (NIR) laser would produce heat to mildly raise the tumor temperature and initiate the polymerization of PEGDA by activating the AIPH thermal initiator, effectively fixing CuS/131I by in situ gelation within the tumor for the long term. By the repeated NIR irradiation of tumors, the tumor hypoxia could be relieved for a much-longer term, resulting in a significant synergistic photothermal brachytherapeutic effect to eliminate tumors. This work presents an efficient type of NIR-responsive nanoparticle-encapsulated hydrogel system, inspiring the design of a form of brachytherapy.


Asunto(s)
Braquiterapia , Neoplasias de la Mama/terapia , Nanopartículas/química , Fototerapia , Animales , Neoplasias de la Mama/diagnóstico por imagen , Línea Celular Tumoral , Cobre/química , Geles/química , Hidrogeles/síntesis química , Hidrogeles/química , Rayos Infrarrojos , Radioisótopos de Yodo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Imagen Óptica , Sulfuros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...