Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Intervalo de año de publicación
1.
Med Teach ; : 1-16, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052086

RESUMEN

BACKGROUND: The traditional apprenticeship system and modern educational models both contribute to traditional Chinese medicine (TCM) education in unique ways. This study aims to evaluate the advantages and disadvantages of these approaches and investigates their potential integration for optimal TCM teaching. METHODS: The study employs a comprehensive literature search strategy with specific keywords through Boolean Operators, focusing on articles discussing TCM education, sourced from the databases PubMed, Scopus, and CNKI. For comparative analysis, the study analyzes the advantages and disadvantages of three distinct approaches-traditional, modern, and hybrid-in TCM education. Finally, we use a spider plot methodology to visually evaluate across 11 critical educational aspects for these approaches. RESULTS: A comprehensive review of 70 articles on TCM education highlights the value of both conventional and modern approaches. Conventional methods often emphasize teacher-centered clinical training that aligns well with the apprenticeship model, serving to bridge formal academic learning with hands-on experience. Modern methods incorporate elements like technology and formal accreditation but caution that the absence of traditional apprenticeship could dilute core TCM principles. One recurring theme across multiple studies is the enduring importance of apprenticeship-a pedagogical cornerstone rooted in TCM's historical and cultural context-as well as its tension with modern methodologies that incorporate online resources and scientific frameworks. An integrated approach attempts to harmonize these strengths but reveals a gap in interactivity, suggesting that incorporating apprenticeship could offer a practical, hands-on method to improve student engagement. CONCLUSIONS: Conventional methods in TCM education emphasize teacher-centered clinical training akin to apprenticeship, modern methods incorporate technological advances and formal accreditation; however, the absence of traditional apprenticeship could compromise core TCM principles, and an integrated model, though striving to harmonize these elements, still falls short in the area of student interactivity.

2.
J Biomech ; 161: 111857, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37939424

RESUMEN

For image-based computational fluid dynamics (CFD) analysis to characterize the local coronary hemodynamic environment, the accuracy depends on the flow rate which is in turn associated with outlet branches' morphology. A good flow distribution strategy is important to mitigate the effect when certain branches cannot be considered. In this study, stenotic coronary arteries from 13 patients were used to analyze the effect of missing branches and different flow distribution strategies. Pressure- and wall shear stress (WSS)-derived parameters around the stenotic region (ROI) were compared, including fractional flow reserve (CT-FFR), instantaneous wave-free ratio (CT-iFR), resting distal to aortic coronary pressure (CT-Pd/Pa), time-averaged WSS, oscillatory shear index (OSI) and relative residence time (RRT). Three flow distribution strategies were the Huo-Kassab model at distal outlets (Type I), flow distribution based on outlet resistances (Type II), and a developed algorithm distributing flow at each bifurcation until the final outlets (Type III). Results showed that Type III strategy for models with truncated branch(es) had a good agreement in both pressure- and WSS-related results (interquatile range less than 0.12% and 4.02%, respectively) with the baseline model around the ROI. The relative difference of pressure- and WSS-related results were correlated with the flow differences in the ROI to the baseline mode. Type III strategy had the best performance in maintaining the flow in intermediate branches. It is recommended for CFD analysis. Removal of branches distal to a stenosis can be undertaken with an improved performance and maintained accuracy, while those proximal to the ROI should be kept.


Asunto(s)
Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Humanos , Vasos Coronarios , Estenosis Coronaria/diagnóstico por imagen , Hidrodinámica , Corazón , Hemodinámica , Angiografía Coronaria
3.
Wideochir Inne Tech Maloinwazyjne ; 18(2): 235-243, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37680739

RESUMEN

Introduction: Both the trans-radial approach (TRA) and the trans-femoral approach (TFA) have been employed for cerebral angiography, but the relative advantages of these two techniques remain uncertain. Aim: To compare the relative safety and efficacy of the TRA and TFA when conducting cerebral angiography. Material and methods: Relevant studies published up to August 2022 were identified in the PubMed, Embase, and Wanfang databases. The rate of successful cerebral angiography was the primary study endpoint, while secondary endpoints included successful puncture rates, operative duration, puncture time, fluoroscopic duration, complication rates, and duration of postoperative recovery. Results: This meta-analysis incorporated 6 randomized controlled trials (RCTs) enrolling 542 and 539 patients who underwent TRA and TFA cerebral angiography, respectively. Comparable pooled successful puncture rates (p = 0.05), successful cerebral angiography rates (p = 1.00), and operative duration (p = 0.10) were observed when comparing these two groups of patients. Relative to the TFA, the TRA was associated with a significantly reduced puncture time (p < 0.00001), a decreased fluoroscopic duration (p < 0.00001), lower rates of complications (p < 0.00001), and more rapid postoperative recovery (p < 0.00001). Significant heterogeneity was found when analyzing the puncture duration (I2 = 98%), operative duration (I2 = 97%), and fluoroscopic duration (I2 = 82%). Conclusions: These results suggest that TRA and TFA cerebral angiography strategies can yield similar rates of successful cerebral angiography outcomes. However, complication rates are lower and postoperative recovery is more rapid for patients who undergo TRA cerebral angiography as compared to TFA cerebral angiography.

4.
Cancer Cell Int ; 21(1): 424, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376212

RESUMEN

BACKGROUND: Glioma is a common primary central nervous system tumour, and therapeutic drugs that can effectively improve the survival rate of patients in the clinic are lacking. Bufalin is effective in treating various tumours, but the mechanism by which it promotes the apoptosis of glioma cells is unclear. The aim of this study was to investigate the drug targets of bufalin in glioma cells and to clarify the apoptotic mechanism. METHODS: Cell viability and proliferation were evaluated by CCK-8 and colony formation assays. Then, the cell cycle and apoptosis, intracellular ion homeostasis, oxidative stress levels and mitochondrial damage were assessed after bufalin treatment. DARTS-PAGE technology was employed and LC-MS/MS was performed to explore the drug targets of bufalin in U251 cells. Molecular docking and western blotting were performed to identify potential targets. siRNA targeting Annexin A2 and the DRP1 protein inhibitor Mdivi-1 were used to confirm the targets of bufalin. RESULTS: Bufalin upregulated the expression of cytochrome C, cleaved caspase 3, p-Chk1 and p-p53 proteins to induce U251 cell apoptosis and cycle arrest in the S phase. Bufalin also induced oxidative stress in U251 cells, destroyed intracellular ion homeostasis, and caused mitochondrial damage. The expression of mitochondrial division-/fusion-related proteins in U251 cells was abnormal, the Annexin A2 and DRP1 proteins were translocated from the cytoplasm to mitochondria, and the MFN2 protein was released from mitochondria into the cytoplasm after bufalin treatment, disrupting the mitochondrial division/fusion balance in U251 cells. CONCLUSIONS: Our research indicated that bufalin can cause Annexin A2 and DRP1 oligomerization on the surface of mitochondria and disrupt the mitochondrial division/fusion balance to induce U251 cell apoptosis.

5.
Biochem Pharmacol ; 186: 114489, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33647262

RESUMEN

RATIONALE: Hypertension in obesity has become a major threat for public health. Omentin-1, a novel adipokine, is down-regulated in obesity. Tetrahydroxystilbene glycoside (TSG) is the main ingredient extracted from Polygonum multiflorum Thunb (PMT), a traditional Chinese medicinal herb safely used for protecting cardiovascular systems over bimillennium. This study aims to examine (i) the impact of omentin-1 downregulation on obesity-related hypertension in murine models and the underlying mechanisms; (ii) whether tetrahydroxystilbene glycoside (TSG) improved endothelial dysfunction and obesity-associated hypertension via the increase of omentin-1. METHODS: (TSG-treated) male Zucker diabetic fatty (ZDF) rats and omentin-1 knockout (OMT-/-) mice were used. In vitro, human umbilical vein endothelial cells (HUVECs) and mature adipocytes differentiated from human visceral preadipocyte (HPA-v) were maintained in a co-culture system. RESULTS: TSG was the main active component of PMT reducing systolic blood pressure and improving endothelial vasodilation. Fortnight-TSG treatment (100 mg/kg/day) increased serum omentin-1 level, also activated Akt/eNOS signaling and enhanced NO bioactivity; decreased expression of NOX2 and p22phox, suppressed production of superoxide and peroxynitrite anion. OMT-/- mice showed elevated blood pressure and impaired endothelial vasorelaxation, whereas hypotensive effect of TSG was blunted. In co-culture system, TSG incubation promoted binding of peroxisome proliferator-activated receptor-γ (PPAR-γ) and Itln-1 promoter in adipocytes, activated Akt/eNOS/NO signaling and attenuated oxidative/nitrative stress in HUVECs. Suppression of Itln-1 with siRNA significantly blocked the protective effect of TSG in vitro. CONCLUSIONS: Down-regulation of omentin-1 induces endothelial dysfunction and hypertension in obesity. TSG treatment (at least partially) increases omentin-1 via promoting binding of PPAR-γ and Itln-1 promoter in adipose tissues, subsequently exerts protective effects on endothelial function via activating Akt/eNOS/NO signaling and attenuating oxidative/nitrative stress. These results suggest that TSG could be developed as a promising anti-hypertension agent that protects against endothelial dysfunction and obesity-associated cardiovascular diseases.


Asunto(s)
Citocinas/biosíntesis , Citocinas/deficiencia , Endotelio Vascular/efectos de los fármacos , Proteínas Ligadas a GPI/biosíntesis , Proteínas Ligadas a GPI/deficiencia , Glucósidos/uso terapéutico , Hipertensión/tratamiento farmacológico , Lectinas/biosíntesis , Lectinas/deficiencia , Estilbenos/uso terapéutico , Animales , Citocinas/genética , Endotelio Vascular/metabolismo , Proteínas Ligadas a GPI/genética , Glucósidos/metabolismo , Glucósidos/farmacología , Humanos , Hipertensión/genética , Hipertensión/metabolismo , Lectinas/genética , Masculino , Ratones , Ratones Noqueados , Ratas , Ratas Zucker , Estilbenos/metabolismo , Estilbenos/farmacología
6.
Int J Mol Med ; 47(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33537802

RESUMEN

Paris saponin H (PSH) is a type of steroid saponin derived from Rhizoma Paridis (RP; the rhizome of Paris). In our previous studies, saponins from RP exerted antiglioma activity in vitro. However, the effects of PSH on glioma have not been elucidated. The aim of the present study was to evaluate the effects of PSH on U251 glioblastoma cells and elucidate the possible underlying mechanism. The cells were treated with PSH at various concentrations for 48 h, and the cell viability, invasion, apoptosis and cycle progression were assessed using specific assay kits. The activation of Akt, 44/42­mitogen­activated protein kinase (MAPK) and the expression levels of A1 adenosine receptor (ARA1) and ARA3 were assessed by western blotting. The results demonstrated that PSH inhibited cell viability, migration and invasion, and induced apoptosis. Treatment of U251 cells with PSH induced the upregulation of p21 and p27, and the downregulation cyclin D1 and S­phase kinase associated protein 2 protein expression levels, which induced cell cycle arrest at the G1 phase. The results also demonstrated that PSH inhibited the expression of ARA1, and the agonist of ARA1, 2­chloro­N6­cyclopentyladenosine, reversed the effects of PSH. Hypoxia induced increases in the ARA3, hypoxia­inducible factor­1α (HIF­1α) and vascular endothelial growth factor (VEGF) protein expression levels, which were associated with the activation of the Akt and P44/42 MAPK pathways. Compared with the hypoxia group, PSH inhibited the expression levels of ARA3, HIF­1α and VEGF, as well as the phosphorylation levels of Akt and 44/42 MAPK, and repressed HIF­1α transcriptional activity. Furthermore, the results demonstrated that PSH inhibited the expression of HIF­1α by inhibiting the phosphorylation of Akt and 44/42 MAPK mediated by ARA3. Taken together, these results suggested that PSH reduced U251 cell viability via the inhibition of ARA1 and ARA3 expression, and further inhibited Akt and 44/42 MAPK phosphorylation, induced apoptosis and cell cycle arrest.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioma/metabolismo , Glioma/patología , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A3/metabolismo , Saponinas/farmacología , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fase G1/efectos de los fármacos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Invasividad Neoplásica , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Oxid Med Cell Longev ; 2020: 6576718, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31998440

RESUMEN

BACKGROUND: Infrasound is a major threat to global health by causing injuries of the central nervous system (CNS). However, there remains no effective therapeutic agent for preventing infrasound-caused CNS injury. 2,3,5,4'-Tetrahydroxystilbene-2-O-ß-D-glycoside (THSG) exerts protective function against CNS injuries and may have beneficial effects on infrasound-induced CNS impairment. METHODS: A mouse model with CNS (oxidative stress-induced inflammation and neuronal apoptosis) injuries was established when the mouse was exposed to the infrasound of 16 Hz at 130 dB for 2 h each day and the duration of treatment was 8 d. The mice were divided into the control (CG, healthy mice), the model (MG, model mice), and the THSG (EG, experimental group, model mice treated with THSG) groups. The learning and memory impairments caused by infrasound were examined using a Morris water maze test. Lipid profiles, antioxidant biomarkers, and inflammatory cytokines in hippocampus tissue were measured by using corresponding ELISA kits. Meanwhile, BCL-2/BAX/caspase-3 signaling pathway was measured in the hippocampi and prefrontal cortex of the mouse brain using real-time qPCR and Western blot. Nissl's stain was used to measure neuronal necrosis in the hippocampi and prefrontal cortex of the mouse brain. RESULTS: THSG significantly ameliorated the learning and memory impairments caused by infrasound. On the other hand, THSG improved lipid profiles, increased antioxidant properties by affecting the levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and malondialdehyde (MDA), and displayed anti-inflammatory action via the downregulation of IL- (interleukin-) 6, IL-8, IL-10, TNF- (tumor necrosis factor-) α, and hs-CRP (high-sensitivity C-reactive protein) in the hippocampal tissues of the mouse model (P < 0.05). Additionally, Nissl's stain showed that THSG inhibited infrasound-induced neuronal necrosis in the hippocampi and prefrontal cortex. Besides, THSG exerted antiapoptosis function by upregulating the level of Bcl-2 and downregulating the levels of BAX and caspase-3 in the hippocampi. CONCLUSION: THSG may be an effective anti-infrasound drug against CNS injury by improving antioxidant, anti-inflammatory, antiapoptosis, and antinecrosis capacities. Further research is still needed to confirm the exact molecular mechanism.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Sistema Nervioso Central , Glucósidos/farmacología , Estilbenos/farmacología , Ondas Ultrasónicas/efectos adversos , Animales , Sistema Nervioso Central/lesiones , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones
8.
Biochem Pharmacol ; 174: 113795, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31926937

RESUMEN

Chemoresistance is a major cause of recurrence and poor prognosis in triple-negative breast cancer (TNBC) patients. The essential oil of Rhizoma Curcumae has been recently reported to enhance the chemosensitivity of cancer cells. However, few reports have systematically illuminated the mechanism. Curcumol is the major component of the essential oil of Rhizoma Curcumae. Therefore, we wondered whether curcumol combined with chemotherapy could increase the anticancer effects. In the present study, we evaluated the anticancer effects of doxorubicin and curcumol alone or in combination by a series of growth proliferation and apoptosis assays in TNBC cells. Our results showed that curcumol enhanced the sensitivity of MDA-MB-231 cells to doxorubicin in vitro and in vivo. Through miRNA-seq, we found that miR-181b-2-3p was involved in the curcumol-mediated promotion of doxorubicin-sensitivity in both parental and doxorubicin-resistant MDA-MB-231 (MDA-MB-231/ADR) cells. Further study showed that miR-181b-2-3p suppressed ABCC3 expression by targeting its 3'UTR. More importantly, we identified that overexpression of miR-181b-2-3p sensitized MDA-MB-231/ADR cells to doxorubicin by inhibiting the drug efflux transporter ABCC3. Furthermore, we found that NFAT1 could be activated by curcumol. In addition, ChIP assay results revealed that NFAT1 could directly bind to the promoter region of miR-181b-2-3p. Finally, using PDX models, we identified that curcumol could enhance sensitivity to doxorubicin to suppress tumor growth by the miR-181b-2-3p-ABCC3 axis in vivo. Taken together, our study provides novel mechanistic evidence for curcumol-mediated sensitization to doxorubicin in TNBC, and it highlights the potential therapeutic usefulness of curcumol as an adjunct drug in TNBC patients with doxorubicin-resistance.


Asunto(s)
Adyuvantes Farmacéuticos/farmacología , Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , MicroARNs/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Sesquiterpenos/farmacología , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Estimación de Kaplan-Meier , Ratones Desnudos , MicroARNs/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Transducción de Señal , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Hortic Res ; 6: 133, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31814986

RESUMEN

Lysine succinylation is a novel, naturally occurring posttranslational modification (PTM) in living organisms. Global lysine succinylation identification has been performed at the proteomic level in various species; however, the study of lysine succinylation in plant species is relatively limited. Patchouli plant (P. cablin (Blanco) Benth., Lamiaceae) is a globally important industrial plant and medicinal herb. In the present study, lysine succinylome analysis was carried out in patchouli plants to determine the potential regulatory role of lysine succinylation in patchouli growth, development, and physiology. The global succinylation sites and proteins in patchouli plants were screened with an immunoprecipitation affinity enrichment technique and advanced mass spectrometry-based proteomics. Several bioinformatic analyses, such as function classification and enrichment, subcellular location predication, metabolic pathway enrichment and protein-protein interaction networking, were conducted to characterize the functions of the identified sites and proteins. In total, 1097 succinylation sites in 493 proteins were detected in patchouli plants, among which 466 succinylation sites in 241 proteins were repeatedly identified within three independent experiments. The functional characterization of these proteins indicated that the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, photosynthesis processes, and amino acid biosynthesis may be regulated by lysine succinylation. In addition, these succinylated proteins showed a wide subcellular location distribution, although the chloroplast and cytoplasm were the top two preferred cellular components. Our study suggested the important role of lysine succinylation in patchouli plant physiology and biology and could serve as a useful reference for succinylation studies in other medicinal plants.

10.
Int J Mol Sci ; 20(23)2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31801204

RESUMEN

The JASMONATE ZIM DOMAIN (JAZ) proteins act as negative regulators in the jasmonic acid (JA) signaling pathways of plants, and these proteins have been reported to play key roles in plant secondary metabolism mediated by JA. In this study, we firstly isolated one JAZ from P. cablin, PatJAZ6, which was characterized and revealed based on multiple alignments and a phylogenic tree analysis. The result of subcellular localization indicated that the PatJAZ6 protein was located in the nucleus of plant protoplasts. The expression level of PatJAZ6 was significantly induced by the methyl jasmonate (MeJA). Furthermore, by means of yeast two-hybrid screening, we identified two transcription factors that interact with the PatJAZ6, the PatMYC2b1 and PatMYC2b2. Virus-induced gene silencing (VIGS) of PatJAZ6 caused a decrease in expression abundance, resulting in a significant increase in the accumulation of patchouli alcohol. Moreover, we overexpressed PatJAZ6 in P. cablin, which down-regulated the patchoulol synthase expression, and then suppressed the biosynthesis of patchouli alcohol. The results demonstrate that PatJAZ6 probably acts as a repressor in the regulation of patchouli alcohol biosynthesis, contributed to a model proposed for the potential JA signaling pathway in P. cablin.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Pogostemon/genética , Proteínas Represoras/genética , Sesquiterpenos/metabolismo , Acetatos/farmacología , Secuencia de Aminoácidos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Silenciador del Gen , Isomerasas/genética , Isomerasas/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacología , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Pogostemon/clasificación , Pogostemon/efectos de los fármacos , Pogostemon/metabolismo , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo , Proteínas Represoras/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Transactivadores/genética , Transactivadores/metabolismo , Técnicas del Sistema de Dos Híbridos
11.
Nanoscale Res Lett ; 14(1): 223, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31278603

RESUMEN

Bufalin, derived from Venenum Bufonis, exerts antitumor effects but has low bioavailability and adverse effects when administered as a single agent. The purpose of this study was to evaluate the physical and chemical properties, antitumor efficacy, general pharmacology, acute toxicity, and tissue distribution profile of bufalin-loaded PEGylated liposomes (BF/PEG-LP), which were prepared in a previous study. To evaluate the safety of the preparation, a red blood cell hemolysis test was performed, which indicated that the hemolysis rate of BF/PEG-LP was significantly lower than that of bufalin alone. Cell viability assay revealed that the blank liposomes were nontoxic. In an in vitro experiment, BF/PEG-LP dose-dependently induced the apoptosis of HepG2, HCT116, A549, and U251 cancer cells, with half-maximal inhibitory concentration (IC50) values of 21.40 ± 2.39, 21.00 ± 3.34, 43.39 ± 6.43, and 31.14 ± 2.58 ng/mL, respectively, at 24 h. Tumor xenograft experiments in nude mice showed that BF/PEG-LP significantly inhibited the growth of U251 cells. Pharmacological evaluation revealed that BF/PEG-LP impacted the general behavior, independent activities, and coordination of mice after a week of administration compared with those of mice in the control group. In an acute toxicity test, the median lethal concentration (LD50) of BF and BF/PEG-LP in mice was 0.156 and 3.03 mg/kg, respectively. Tissue distribution profiles showed that the BF concentration in brain tissue was 20% higher, whereas that in heart tissue was 30% lower when BF/PEG-LP was administered to mice compared with BF. Thus, BF/PEG-LP exhibited lower hemolysis and cytotoxicity and improved pharmacokinetic and antitumor properties compared with bufalin alone, indicating its potential for future pharmacological application, particularly for glioma treatment.

12.
BMC Plant Biol ; 19(1): 266, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31221095

RESUMEN

BACKGROUND: Pogostemon cablin (Blanco) Benth. (Patchouli) is an important aromatic and medicinal plant and widely used in traditional Chinese medicine as well as in the perfume industry. Patchoulol is the primary bioactive component in P. cablin, its biosynthesis has attracted widespread interests. Previous studies have surveyed the putative genes involved in patchoulol biosynthesis using next-generation sequencing method; however, technical limitations generated by short-read sequencing restrict the yield of full-length genes. Additionally, little is known about the expression pattern of genes especially patchoulol biosynthesis related genes in response to methyl jasmonate (MeJA). Our understanding of patchoulol biosynthetic pathway still remained largely incomplete to date. RESULTS: In this study, we analyzed the morphological character and volatile chemical compounds of P. cablin cv. 'Zhanxiang', and 39 volatile chemical components were detected in the patchouli leaf using GC-MS, most of which were sesquiterpenes. Furthermore, high-quality RNA isolated from leaves and stems of P. cablin were used to generate the first full-length transcriptome of P. cablin using PacBio isoform sequencing (Iso-Seq). In total, 9.7 Gb clean data and 82,335 full-length UniTransModels were captured. 102 transcripts were annotated as 16 encoding enzymes involved in patchouli alcohol biosynthesis. Accorded with the uptrend of patchoulol content, the vast majority of genes related to the patchoulol biosynthesis were up-regulated after MeJA treatment, indicating that MeJA led to an increasing synthesis of patchoulol through activating the expression level of genes involved in biosynthesis pathway of patchoulol. Moreover, expression pattern analysis also revealed that transcription factors participated in JA regulation of patchoulol biosynthesis were differentially expressed. CONCLUSIONS: The current study comprehensively reported the morphological specificity, volatile chemical compositions and transcriptome characterization of the Chinese-cultivated P. cablin cv. 'Zhanxiang', these results contribute to our better understanding of the physiological and molecular features of patchouli, especially the molecular mechanism of biosynthesis of patchoulol. Our full-length transcriptome data also provides a valuable genetic resource for further studies in patchouli.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Pogostemon/genética , Sesquiterpenos/metabolismo , Acetatos , Vías Biosintéticas , Ciclopentanos , Perfilación de la Expresión Génica , Oxilipinas , Transcriptoma
13.
Microvasc Res ; 123: 42-49, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30367840

RESUMEN

Tetrahydroxystilbene glucoside (TSG) is the main water-soluble component in Polygonum multiflorum Thunb, and it has many cardioprotective effects. Although TSG is able to relax blood vessels, its relaxation of rat superior mesenteric arteries and the underlying mechanism of this process are not clearly understood. The aim of the present study was to use in vivo and in vitro models to investigate the arterial relaxation effect of TSG on rat superior mesenteric arteries and the mechanisms involved. We found that TSG concentration-dependently relaxed the superior mesenteric artery with or without endothelium. The vasorelaxation induced by TSG is not related to the vasodilator derived factor NO but is rather by the inhibition of COX-2 activity and decreased TXA2. We also found that the vasorelaxation induced by TSG was attenuated by 4­AP. Moreover, TSG also inhibited the contraction induced by an increase in external calcium concentration in Ca2+-free medium plus KCl (60 mM). These results suggest that TSG induces relaxation in mesenteric arterial rings through an endothelium-dependent pathway that involves the inhibition of COX-2 activity and decreased in TXA2 and through an endothelium-independent pathway via opening of a voltage-dependent K+ channel, blockade of Ca2+ influx and release of intracellular Ca2+.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2/farmacología , Endotelio Vascular/efectos de los fármacos , Glucósidos/farmacología , Músculo Liso Vascular/efectos de los fármacos , Estilbenos/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Relación Dosis-Respuesta a Droga , Endotelio Vascular/metabolismo , Masculino , Arteria Mesentérica Superior/efectos de los fármacos , Arteria Mesentérica Superior/metabolismo , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Canales de Potasio con Entrada de Voltaje/agonistas , Canales de Potasio con Entrada de Voltaje/metabolismo , Ratas Sprague-Dawley , Tromboxano A2/metabolismo
14.
Mol Pain ; 14: 1744806918814367, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30380983

RESUMEN

Tetrahydroxystilbene glucoside (THSG) is one of the active ingredients of Polygonum multiflorum. It has been shown to exert a variety of pharmacological effects, including antioxidant, anti-aging, and anti-atherosclerosis. Because of its prominent anti-inflammatory effect, we explored whether THSG had analgesic effect. In this study, we used a model of chronic inflammatory pain caused by injecting complete Freund's adjuvant into the hind paw of mice. We found THSG relieved swelling and pain in the hind paw of mice on a dose-dependent manner. In the anterior cingulate cortex, THSG suppressed the upregulation of GluN2B-containing N-methyl-D-aspartate receptors and the downregulation of GluN2A-containing N-methyl-D-aspartate receptors caused by chronic inflammation. In addition, THSG increased Bcl-2 and decreased Bax and Caspase-3 expression by protecting neuronal survival. Furthermore, THSG inhibited the phosphorylation of p38 and the increase of nuclear factor κB (NF-κB) and tumor necrosis factor α (TNF-α). Immunohistochemical staining revealed that THSG blocked the activation of microglia and reduced the release of proinflammatory cytokines TNF-α, interleukin 1ß (IL-1ß), and interleukin 6 (IL-6). In conclusion, this study demonstrated that THSG had a certain effect on alleviating complete Freund's adjuvant-induced chronic inflammatory pain.


Asunto(s)
Apoptosis , Dolor Crónico/tratamiento farmacológico , Glucósidos/uso terapéutico , Giro del Cíngulo/metabolismo , Giro del Cíngulo/patología , Inflamación/tratamiento farmacológico , Microglía/patología , Receptores de N-Metil-D-Aspartato/metabolismo , Estilbenos/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dolor Crónico/complicaciones , Dolor Crónico/patología , Citocinas/metabolismo , Edema/tratamiento farmacológico , Adyuvante de Freund/administración & dosificación , Glucósidos/química , Glucósidos/farmacología , Giro del Cíngulo/efectos de los fármacos , Hiperalgesia/complicaciones , Hiperalgesia/tratamiento farmacológico , Inflamación/complicaciones , Inflamación/patología , Mediadores de Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Estilbenos/química , Estilbenos/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Nanoscale Res Lett ; 12(1): 585, 2017 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-29124481

RESUMEN

Bufalin was reported to show strong pharmacological effects including cardiotonic, antiviral, immune-regulation, and especially antitumor effects. The objective of this study was to determine the characterization, antitumor efficacy, and pharmacokinetics of bufalin-loaded PEGylated liposomes compared with bufalin entity, which were prepared by FDA-approved pharmaceutical excipients. Bufalin-loaded PEGylated liposomes and bufalin-loaded liposomes were prepared reproducibly with homogeneous particle size by the combination of thin film evaporation method and high-pressure homogenization method. Their mean particle sizes were 127.6 and 155.0 nm, mean zeta potentials were 2.24 and - 18.5 mV, and entrapment efficiencies were 76.31 and 78.40%, respectively. In vitro release profile revealed that the release of bufalin in bufalin-loaded PEGylated liposomes was slower than that in bufalin-loaded liposomes. The cytotoxicity of blank liposomes has been found within acceptable range, whereas bufalin-loaded PEGylated liposomes showed enhanced cytotoxicity to U251 cells compared with bufalin entity. In vivo pharmacokinetics indicated that bufalin-loaded PEGylated liposomes could extend or eliminate the half-life time of bufalin in plasma in rats. The results suggested that bufalin-loaded PEGylated liposomes improved the solubility and increased the drug concentration in plasma.

16.
Acta Pharmacol Sin ; 38(3): 317-330, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28112174

RESUMEN

2,3,5,4'-Tetrahydroxystilbene-2-O-ß-D-glucoside (TSG) is a water-soluble active component extracted from Polygonum multiflorum Thunb. A number of studies demonstrate that TSG exerts cardioprotective effects. Since endoplasmic reticulum (ER) stress plays a key role in myocardial ischemia/reperfusion (MI/R)-induced cell apoptosis, we sought to determine whether modulation of the ER stress during MI/R injury was involved in the cardioprotective action of TSG. Male mice were treated with TSG (60 mg·kg-1·d-1, ig) for 2 weeks and then were subjected to MI/R surgery. Pre-administration of TSG significantly improved post-operative cardiac function, and suppressed MI/R-induced myocardial apoptosis, evidenced by the reduction in the myocardial apoptotic index, serum levels of LDH and CK after 6 h of reperfusion. TSG (0.1-1000 µmol/L) did not affect the viability of cultured H9c2 cardiomyoblasts in vitro, but pretreatment with TSG dose-dependently decreased simulated ischemia/reperfusion (SIR)-induced cell apoptosis. Furthermore, both in vivo and in vitro studies revealed that TSG treatment activated the Notch1/Hes1 signaling pathway and suppressed ER stress, as evidenced by increasing Notch1, Notch1 intracellular domain (NICD), Hes1, and Bcl-2 expression levels and by decreasing p-PERK/PERK ratio, p-eIF2α/eIF2α ratio, and ATF4, CHOP, Bax, and caspase-3 expression levels. Moreover, the protective effects conferred by TSG on SIR-treated H9c2 cardiomyoblasts were abolished by co-administration of DAPT (the Notch1 signaling inhibitor). In summary, TSG ameliorates MI/R injury in vivo and in vitro by activating the Notch1/Hes1 signaling pathway and attenuating ER stress-induced apoptosis.


Asunto(s)
Cardiotónicos/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Glucósidos/farmacología , Daño por Reperfusión Miocárdica/prevención & control , Receptor Notch1/metabolismo , Estilbenos/farmacología , Factor de Transcripción HES-1/metabolismo , Animales , Apoptosis/efectos de los fármacos , Cardiotónicos/uso terapéutico , Línea Celular , Estrés del Retículo Endoplásmico/fisiología , Glucósidos/uso terapéutico , Masculino , Ratones Endogámicos C57BL , Mioblastos Cardíacos/metabolismo , Mioblastos Cardíacos/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Ratas , Transducción de Señal , Estilbenos/uso terapéutico
17.
Planta Med ; 83(8): 676-683, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27894149

RESUMEN

Cerebral ischemia can cause brain infarcts, which are difficult to recover due to poor angiogenesis. 2,3,5,4'-Tetrahydroxystilbene-2-O-ß-D-glucoside is a natural polyphenol, has antioxidant and anti-inflammatory activity, and can protect from ischemic neuronal injury. However, little is known about the effect of 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucoside on brain microcirculation after stroke. This study aimed at investigating the influence of 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucoside on brain lesions and angiogenesis after stroke. Sprague-Dawley rats were subjected to right middle cerebral artery occlusion and treated with vehicle, nimodipine, or different doses of 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucoside daily beginning at 6 h post-middle cerebral artery occlusion for 14 days. The volume of cerebral infarcts, degree of neurological dysfunction, and level of microvessel density were determined longitudinally. The levels of vascular endothelial growth factor, angiopoietin 1, and angiopoietin receptor-2 expression in the brain lesions were characterized by immunohistochemistry and Western blot assays at 14 days post-middle cerebral artery occlusion. We found that 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucoside significantly promoted postoperative recovery in rats by minimizing the volume of cerebral infarcts and improving neurological dysfunction in a dose- and time-dependent manner. Additionally, 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucoside significantly increased the microvessel density in the brain and upregulated CD31 expression in ischemic penumbra, relative to that in the control. Finally, treatment with 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucoside significantly upregulated the relative levels of vascular endothelial growth factor, angiopoietin 1, and angiopoietin receptor-2 expression in the brain lesions of rats. Therefore, these data indicated that 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucoside treatment promoted angiogenesis and recovery from ischemia/reperfusion-induced brain injury in rats.


Asunto(s)
Inductores de la Angiogénesis/uso terapéutico , Lesiones Encefálicas/prevención & control , Isquemia Encefálica , Glucósidos/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico , Estilbenos/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Angiotensina I/metabolismo , Animales , Western Blotting , Fallopia multiflora/química , Infarto de la Arteria Cerebral Media , Masculino , Neovascularización Fisiológica/efectos de los fármacos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor TIE-2/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-666569

RESUMEN

OBJECTIVE To determine the characterization, anti-tumor efficacy and pharmacokinetics of bufalin- loaded PEGylated liposomes compared with bufalin entity. METHODS Bufalin- loaded PEGylated liposomes and bufalin- loaded liposomes were prepared reproducibly with homogeneous particle size by the combination of thin film evaporation method and high pressure homogenization method. The particle size and zeta potential of the liposomes were determined by dynamic light scattering technique. The direct imaging of morphology of liposomes was charactered by transmission electron microscope. The content of bufalin in liposomes was analysed by HPLC method. The entrapment efficiency and the particle size was applied to assess the stability profile, after storage at 4℃ on day 0, 7, 15, 30 and 90. The in-vitro release behaviours of bufalin from liposomes were conducted using dialysis bag technique at 37℃. In-vitro cytotoxicity studies were carried out using MTT〔3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide〕assay on several kinds of tumor cell lines including SW620, PC-3, MDA-MB-231, A549, U251, U87 and HepG2. In-vivo pharmacokinetic study of bufalin liposomes was evaluated by HPLC method. RESULTS Their mean particle sizes were 127.6 nm and 155.0 nm, mean zeta potentials were 2.24 mV and - 18.5 mV, entrapment efficiencies were 76.31% and 78.40% , respectively. In- vitro release profile revealed that the release of bufalin in bufalin- loaded PEGylated liposomes was slower than that of bufalin-loaded liposomes. The cytotoxicity of blank liposomes has been found within acceptable range, whereas bufalin-loaded PEGylated liposomes showed enhanced cytotoxicity to U251 cells compared with bufalin entity. In-vivo pharmacokinetics indicated that bufalin-loaded PEGylated liposomes could extend eliminate half-life time of bufalin in plasma in rats. CONCLUSION The results suggested that bufalin-loaded PEGylated liposomes improved the solubility and increased the drug concentration in plasma.

19.
Am J Chin Med ; 44(7): 1393-1412, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27776426

RESUMEN

Autophagy exists in vascular endothelial cells, but the relationship between autophagy and blood vessel dysfunction in hypertension remains elusive. This study aimed to investigate role of autophagy in vascular endothelial dysfunction in prehypertension and hypertension and the underlying mechanisms involved. Furthermore, we sought to determine if and how tetrahydroxystilbene glucoside (TSG), a resveratrol analogue and active ingredient of Polygonum multiflorum Thunb used for its cardiovascular protective properties in traditional Chinese medicine, influences vascular endothelial function. Male spontaneously hypertensive rats (SHRs) aged 4 weeks (young) and 12 weeks (adult) were studied and the vascular function of isolated aorta and mesenteric artery was assessed in vitro. Compared with Wistar Kyoto rats (WKY), young and adult SHRs showed endothelial dysfunction of the aorta and mesenteric artery, along with decreased pAkt, pmTOR, and autophagic marker protein p62 and increased LC3 II/I in microvascular but not aortic tissues. TSG administration for 14 days significantly improved mesenteric vascular endothelial function, increased levels of pAkt and pmTOR, and decreased autophagy. Pretreatment of young SHRs with the mTOR inhibitor rapamycin blocked the antiautophagic and vasodilative effects of TSG. Moreover, TSG significantly activated Akt-mTOR signaling in HUVECs and reduced the autophagic levels in vitro, which were almost completely blocked by rapamycin. In summary, mesenteric endothelial dysfunction in prehypertensive SHRs was at least partly attributable to excessive autophagy in vascular tissues. TSG partly restored microvascular endothelial dysfunction through activating the Akt/mTOR pathway, which consequently suppressed autophagy, indicating that TSG could be potentially applied to protect vascular function against subclinical changes in prehypertension.


Asunto(s)
Autofagia/efectos de los fármacos , Células Endoteliales/fisiología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiopatología , Fallopia multiflora/química , Glucósidos/farmacología , Glucósidos/uso terapéutico , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Microvasos , Fitoterapia , Estilbenos/farmacología , Estilbenos/uso terapéutico , Vasodilatadores , Animales , Autofagia/genética , Depresión Química , Glucósidos/aislamiento & purificación , Humanos , Técnicas In Vitro , Masculino , Microvasos/citología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Estilbenos/aislamiento & purificación , Serina-Treonina Quinasas TOR/metabolismo
20.
Life Sci ; 158: 37-45, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27341995

RESUMEN

HEADINGS AIMS: Cardiac stem cells (CSCs)-transplanted therapy provides a promising therapy for the ischemic heart disease (IHD), especially in the epidemic of myocardial infarction (MI). The compound 2,3,5,4'-tetrahydroxystilbene-2-O-ß-d-glucoside (THSG) can induce CSC proliferation in vitro based on our previous study, so we aimed to study the induce effect of THSG on CSCs-transplanted MI rat in vivo. MATERIALS AND METHODS: Using a murine model of MI, this study was designed to evaluate the impact of THSG (30, 60, 120mg/kg) on CSCs-based therapy for MI and the underlying mechanism in this process. KEY FINDING: The results showed that THSG on CSCs-transplanted therapy groups (THSG+CSCs groups) can significantly reduce S-T segment elevation, and increase heart rate compared with MI group. The left ventricular ejection fraction (LVEF) and the left ventricular fractional shortening (LVFS) were significantly reduced in THSG+CSCs groups compared to the MI group. The levels of enzyme expression (CK-MB, LDH), the heart weight index (HWI) and myocardial infarct size (IS) were all reduced in THSG+CSCs groups. Moreover, other changes noted during these 28days post-MI, included pathologic changes, as well as increased stem cell antigen-1 (Sca-1) expression, or expression of Nkx2.5, GATA-4, and Connexin 43 in myocardial tissue, and reduced the Caspase-3 expression. SIGNIFICANCE: Our findings indicated that THSG facilitated CSCs-transplanted therapy in MI. These observations may be associated with the inducted of THSG on the proliferation of CSCs in vivo and also, with the subsequent differentiation of additional intrinsic neonatal cardiomyocytes to replace damaged heart tissue.


Asunto(s)
Modelos Animales de Enfermedad , Glucósidos/administración & dosificación , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/trasplante , Trasplante de Células Madre , Estilbenos/administración & dosificación , Animales , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...