Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 104: 129711, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38521175

RESUMEN

WRN helicase is a critical protein involved in maintaining genomic stability, utilizing ATP hydrolysis to dissolve DNA secondary structures. It has been identified as a promising synthetic lethal target for microsatellite instable (MSI) cancers. However, few WRN helicase inhibitors have been discovered, and their potential binding sites remain unexplored. In this study, we analyzed potential binding sites for WRN inhibitors and focused on the ATP-binding site for screening new inhibitors. Through molecular dynamics-enhanced virtual screening, we identified two compounds, h6 and h15, which effectively inhibited WRN's helicase and ATPase activity in vitro. Importantly, these compounds selectively targeted WRN's ATPase activity, setting them apart from other non-homologous proteins with ATPase activity. In comparison to the homologous protein BLM, h6 exhibits some degree of selectivity towards WRN. We also investigated the binding mode of these compounds to WRN's ATP-binding sites. These findings offer a promising strategy for discovering new WRN inhibitors and present two novel scaffolds, which might be potential for the development of MSI cancer treatment.


Asunto(s)
Adenosina Trifosfato , Antineoplásicos , Inhibidores Enzimáticos , Simulación de Dinámica Molecular , Helicasa del Síndrome de Werner , Adenosina Trifosfato/química , Sitios de Unión , Helicasa del Síndrome de Werner/antagonistas & inhibidores , Helicasa del Síndrome de Werner/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/química , Antineoplásicos/farmacología , Inestabilidad de Microsatélites/efectos de los fármacos , Neoplasias/genética , Humanos
2.
Analyst ; 148(10): 2343-2351, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37185609

RESUMEN

Helicases are crucial enzymes in DNA and RNA metabolism and function by unwinding particular nucleic acid structures. However, most convenient and high-throughput helicase assays are limited to the typical duplex DNA. Herein, we developed an immunosorbent assay to monitor the Werner syndrome (WRN) helicase unwinding a wide range of DNA structures, such as a replication fork, a bubble, Holliday junction, G-quadruplex and hairpin. This assay could sensitively detect the unwinding of DNA structures with detection limits around 0.1 nM, and accurately monitor the substrate-specificity of WRN with a comparatively less time-consuming and high throughput process. Remarkably, we have established that this new assay was compatible in evaluating helicase inhibitors and revealed that the inhibitory effect was substrate-dependent, suggesting that diverse substrate structures other than duplex structures should be considered in discovering new inhibitors. Our study provided a foundational example for using this new assay as a powerful tool to study helicase functions and discover potent inhibitors.


Asunto(s)
RecQ Helicasas , Síndrome de Werner , Humanos , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Inmunoadsorbentes , Replicación del ADN , Helicasa del Síndrome de Werner/genética , Helicasa del Síndrome de Werner/metabolismo , Exodesoxirribonucleasas/metabolismo , ADN/química , Síndrome de Werner/genética
3.
Molecules ; 28(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36985661

RESUMEN

Mitochondria have a crucial role in regulating energy metabolism and their dysfunction has been linked to tumorigenesis. Cancer diagnosis and intervention have a great interest in the development of new agents that target biomolecules within mitochondria. However, monitoring and modulating mitochondria RNA (mtRNA), an essential component in mitochondria, in cells is challenging due to limited functional research and the absence of targeting agents. In this study, we designed and synthesized a fluorescent quinolinium derivative, QUCO-1, which actively lit up with mtRNA in both normal and cancer cells in vitro. Additionally, we evaluated the function of QUCO-1 as an mtRNA ligand and found that it effectively induced severe mitochondrial dysfunction and OXPHOS inhibition in RKO colorectal cancer cells. Treatment with QUCO-1 resulted in apoptosis, cell cycle blockage at the G2/M phase, and the effective inhibition of cell proliferation. Our findings suggest that QUCO-1 has great potential as a promising probe and therapeutic agent for mtRNA, with the potential for treating colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Mitocondrias , Humanos , ARN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Proliferación Celular , Apoptosis , Colorantes Fluorescentes/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Línea Celular Tumoral
4.
Eur J Med Chem ; 246: 114944, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36459756

RESUMEN

The homologous recombination repair (HRR) pathway is critical for repairing double-strand breaks (DSB). Inhibition of the HRR pathway is usually considered a promising strategy for anticancer therapy. The Bloom's Syndrome Protein (BLM), a DNA helicase, is essential for promoting the HRR pathway. Previously, we discovered quinazolinone derivative 9h as a potential BLM inhibitor, which suppressed the proliferation of colorectal cancer (CRC) cell HCT116. Herein, a new series of quinazolinone derivatives with N3-substitution was designed and synthesized to improve the anticancer activity and explore the structure-activity relationship (SAR). After evaluating their BLM inhibitory activity, the SAR was discussed, leading to identifying compound 21 as a promising BLM inhibitor. 21 exhibited the potent BLM-dependent cytotoxicity against the CRC cells but weak against normal cells. Further evaluation revealed that 21 could disrupt the HRR level while inhibiting BLM located on the DSB site and trigger DNA damage in the CRC cells. This compound effectively suppressed the proliferation and invasion of CRC cells, along with cell cycle arrest and apoptosis. Consequently, 21 might be a promising candidate for treating CRC, and the BLM might be a new potential therapeutic target for CRC.


Asunto(s)
Síndrome de Bloom , Neoplasias Colorrectales , Humanos , Síndrome de Bloom/genética , Quinazolinonas/farmacología , Reparación del ADN , Daño del ADN , Neoplasias Colorrectales/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...