Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Circ Res ; 135(6): e133-e149, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39082135

RESUMEN

BACKGROUND: Prostaglandin I2 synthesized by endothelial COX (cyclooxygenase) evokes potent vasodilation in some blood vessels but is paradoxically responsible for endothelium-dependent constriction (EDC) in others. Prostaglandin I2 production and EDC may be enhanced in diseases such as hypertension. However, how PGIS (prostaglandin I2 synthase) deficiency affects EDC and how this is implicated in the consequent cardiovascular pathologies remain largely unknown. METHODS: Experiments were performed with wild-type, Pgis knockout (Pgis-/-) and Pgis/thromboxane-prostanoid receptor gene (Tp) double knockout (Pgis-/-Tp-/-) mice and Pgis-/- mice transplanted with unfractionated wild-type or Cox-1-/- bone marrow cells, as well as human umbilical arteries. COX-derived prostanoids were measured by high-performance liquid chromatography-mass spectrometry. Vasomotor responses of distinct types of arteries were assessed by isometric force measurement. Parameters of hypertension, vascular remodeling, and cardiac hypertrophy in mice at different ages were monitored. RESULTS: PGF2α, PGE2, and a trace amount of PGD2, but not thromboxane A2 (TxA2), were produced in response to acetylcholine in Pgis-/- or PGIS-inhibited arteries. PGIS deficiency resulted in exacerbation or occurrence of EDC ex vivo and in vivo. Endothelium-dependent hyperpolarization was unchanged, but phosphorylation levels of eNOS (endothelial nitric oxide synthase) at Ser1177 and Thr495 were altered and NO production and the NO-dependent relaxation evoked by acetylcholine were remarkably reduced in Pgis-/- aortas. Pgis-/- mice developed high blood pressure and vascular remodeling at 16 to 17 weeks and subsequently cardiac hypertrophy at 24 to 26 weeks. Meanwhile, blood pressure and cardiac parameters remained normal at 8 to 10 weeks. Additional ablation of TP (TxA2 receptor) not only restrained EDC and the downregulation of NO signaling in Pgis-/- mice but also ameliorated the cardiovascular abnormalities. Stimulation of Pgis-/- vessels with acetylcholine in the presence of platelets led to increased TxA2 generation. COX-1 disruption in bone marrow-derived cells failed to affect the development of high blood pressure and vascular remodeling in Pgis-/- mice though it largely suppressed the increase of plasma TxB2 (TxA2 metabolite) level. CONCLUSIONS: Our study demonstrates that the non-TxA2 prostanoids/TP axis plays an essential role in mediating the augmentation of EDC and cardiovascular disorders when PGIS is deficient, suggesting TP as a promising therapeutic target in diseases associated with PGIS insufficiency.


Asunto(s)
Endotelio Vascular , Oxidorreductasas Intramoleculares , Ratones Endogámicos C57BL , Ratones Noqueados , Prostaglandinas , Vasoconstricción , Animales , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/deficiencia , Oxidorreductasas Intramoleculares/metabolismo , Ratones , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Prostaglandinas/metabolismo , Humanos , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/deficiencia , Tromboxano A2/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/etiología , Masculino , Receptores de Tromboxanos/metabolismo , Receptores de Tromboxanos/genética , Vasodilatación , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Remodelación Vascular , Transducción de Señal , Ciclooxigenasa 1/deficiencia , Ciclooxigenasa 1/genética , Ciclooxigenasa 1/metabolismo
2.
Antioxidants (Basel) ; 12(1)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36671064

RESUMEN

Homocysteine is an amino acid containing a free sulfhydryl group, making it probably contribute to the antioxidative capacity in the body. We recently found that plasma total homocysteine (total-Hcy) concentration increased with time when whole blood samples were kept at room temperature. The present study was to elucidate how increased plasma total-Hcy is produced and explore the potential physiological role of homocysteine. Erythrocytes and leukocytes were separated and incubated in vitro; the amount of total-Hcy released by these two kinds of cells was then determined by HPLC-MS. The effects of homocysteine and methionine on reactive oxygen species (ROS) production, osmotic fragility, and methemoglobin formation in erythrocytes under oxidative stress were studied. The reducing activities of homocysteine and methionine were tested by ferryl hemoglobin (Hb) decay assay. As a result, it was discovered that erythrocytes metabolized methionine to homocysteine, which was then oxidized within the cells and released to the plasma. Homocysteine and its precursor methionine could significantly decrease Rosup-induced ROS production in erythrocytes and inhibit Rosup-induced erythrocyte's osmotic fragility increase and methemoglobin formation. Homocysteine (but not methionine) was demonstrated to enhance ferryl Hb reduction. In conclusion, erythrocytes metabolize methionine to homocysteine, which contributes to the antioxidative capability under oxidative stress and might be a supplementary protective factor for erythrocytes against ROS damage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA