Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(13): 6049-6057, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38525996

RESUMEN

High Cl- concentration in saline wastewater (e.g., landfill leachate) limits wastewater purification. Catalytic Cl- conversion into reactive chlorine species (RCS) arises as a sustainable strategy, making the salinity profitable for efficient wastewater treatment. Herein, aiming to reveal the structure-property relationship in Cl- utilization, bismuth oxychloride (BiOCl) photocatalysts with coexposed {001} and {110} facets are synthesized. With an increasing {001} ratio, the RCS production efficiency increases from 75.64 to 96.89 µg L-1 min-1. Mechanism investigation demonstrates the fast release of lattice Cl- as an RCS and the compensation of ambient Cl-. Correlation analysis between the internal electric field (IEF, parallel to [001]) and normalized efficiency on {110} (kRCS/S{110}, perpendicular to [001]) displays a coefficient of 0.86, validating that the promoted carrier dynamics eventually affects Cl- conversion on the open layered structure. The BiOCl photocatalyst is well behaved in ammonium (NH4+-N) degradation ranging from 20 to 800 mg N L-1 with different chlorinity (3-12 g L-1 NaCl). The sustainable Cl- conversion into RCS also realizes 85.4% of NH4+-N removal in the treatment of realistic landfill leachate (662 mg of N L-1 NH4+-N). The structure-property relationship provides insights into the design of efficient catalysts for environment remediation using ambient Cl-.


Asunto(s)
Compuestos de Amonio , Bismuto , Contaminantes Químicos del Agua , Aguas Residuales , Contaminantes Químicos del Agua/química , Salinidad
2.
Biol Psychiatry ; 95(9): 896-908, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37913973

RESUMEN

BACKGROUND: Circular RNAs are highly enriched in the synapses of the mammalian brain and play important roles in neurological function by acting as molecular sponges of microRNAs. circAnk3 is derived from the 11th intron of the ankyrin-3 gene, Ank3, a strong genetic risk factor for neuropsychiatric disorders; however, the function of circAnk3 remains elusive. In this study, we investigated the function of circAnk3 and its downstream regulatory network for target genes in the hippocampus of mice. METHODS: The DNA sequence from which circAnk3 is generated was modified using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9) technology, and neurobehavioral tests (anxiety and depression-like behaviors, social behaviors) were performed in circAnk3+/- mice. A series of molecular and biochemical assays were used to investigate the function of circAnk3 as a microRNA sponge and its downstream regulatory network for target genes. RESULTS: circAnk3+/- mice exhibited both anxiety-like behaviors and social deficits. circAnk3 was predominantly located in the cytoplasm of neuronal cells and functioned as a miR-7080-3p sponge to regulate the expression of Iqgap1. Inhibition of miR-7080-3p or restoration of Iqgap1 in the hippocampus ameliorated the behavioral deficits of circAnk3+/- mice. Furthermore, circAnk3 deficiency decreased the expression of the NMDA receptor subunit GluN2a and impaired the structural plasticity of dendritic synapses in the hippocampus. CONCLUSIONS: Our results reveal an important role of the circAnk3/miR-7080-3p/IQGAP1 axis in maintaining the structural plasticity of hippocampal synapses. circAnk3 might offer new insights into the involvement of circular RNAs in neuropsychiatric disorders.


Asunto(s)
MicroARNs , ARN Circular , Ratones , Animales , ARN Circular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Hipocampo/metabolismo , Encéfalo/metabolismo , Ansiedad/genética , Mamíferos/genética , Mamíferos/metabolismo
3.
Nat Commun ; 14(1): 5742, 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37717005

RESUMEN

Artificial photosynthesis is a promising strategy for efficient hydrogen peroxide production, but the poor directional charge transfer from bulk to active sites restricts the overall photocatalytic efficiency. To address this, a new process of dipole field-driven spontaneous polarization in nitrogen-rich triazole-based carbon nitride (C3N5) to harness photogenerated charge kinetics for hydrogen peroxide production is constructed. Here, C3N5 achieves a hydrogen peroxide photosynthesis rate of 3809.5 µmol g-1 h-1 and a 2e- transfer selectivity of 92% under simulated sunlight and ultrasonic forces. This high performance is attributed to the introduction of rich nitrogen active sites of the triazole ring in C3N5, which brings a dipole field. This dipole field induces a spontaneous polarization field to accelerate a rapid directional electron transfer process to nitrogen active sites and therefore induces Pauling-type adsorption of oxygen through an indirect 2e- transfer pathway to form hydrogen peroxide. This innovative concept using a dipole field to harness the migration and transport of photogenerated carriers provides a new route to improve photosynthesis efficiency via structural engineering.

4.
Small ; 19(49): e2303129, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37616518

RESUMEN

Piezocatalysis has increasingly gained prominence due to its enormous potential for addressing energy shortages and environmental pollution issues. Nonetheless, the low piezocatalytic activity of state-of-the-art materials seriously inhibits the practical applications of piezocatalysis. Here, it is proposed to greatly enhance the piezocatalytic activity for a perovskite ferroelectric, i.e., Sm-doped 0.68Pb(Mg1/3 Nb2/3 )-0.32PbTiO3 (Sm-PMN-PT, a solid solution with ultrahigh piezoelectricity), by introducing oxygen vacancies (OVs). The results show that the presence of OVs promotes the production of reactive oxygen species while enhancing the adsorption and activation of organic pollutants to improve piezocatalytic performance. The OV-Sm-PMN-PT is found to possess a superior piezocatalytic degradation rate constant of 0.073 min-1 under ultrasonic vibration, which is ≈4.9 times higher than that of pristine Sm-PMN-PT. Furthermore, the OV-Sm-PMN-PT can efficiently remove RhB under 400 rpm stirring, making it a promising candidate for water purification using low-frequency mechanical energy from nature. This research sheds light on the design of piezocatalytic materials via defect engineering.

5.
Cell Rep ; 41(9): 111724, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36450263

RESUMEN

Studies have shown the therapeutic effects of a ketogenic diet (KD) on epilepsy, but the effect of a KD on drug reinstatement is largely unclear. This study aims to investigate whether KD consumption possesses therapeutic potential for cocaine reinstatement and the molecular mechanism. We find that a KD significantly reduces cocaine-induced reinstatement in mice, which is accompanied by a markedly elevated level of ß-hydroxybutyrate (ß-OHB), the most abundant ketone body, in the hippocampus. The underlying mechanism is that ß-OHB posttranslationally modifies CaMKII-α with ß-hydroxybutyrylation, resulting in significant inhibition of T286 autophosphorylation and downregulation of CaMKII activity. Collectively, our results reveal that ß-hydroxybutyrylation is a posttranslational modification of CaMKII-α that plays a critical role in mediating the effect of KD consumption in reducing cocaine reinstatement.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Cocaína , Animales , Ratones , Ácido 3-Hidroxibutírico/farmacología , Cocaína/farmacología , Condicionamiento Clásico , Hipocampo
6.
Mol Metab ; 65: 101597, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36096452

RESUMEN

OBJECTIVE: Contextual drug-associated memory precipitates craving and relapse in substance users, and the risk of relapse is a major challenge in the treatment of substance use disorders. Thus, understanding the neurobiological underpinnings of how this association memory is formed and maintained will inform future advances in the treatment of drug addiction. Brain endocannabinoids (eCBs) signalling has been associated with drug-induced neuroadaptations, but the role of lipases that mediate small lipid ligand biosynthesis and metabolism in regulating drug-associated memory has not been examined. Here, we explored how manipulation of the lipase fatty acid amide hydrolase (FAAH), which is involved in mediating the level of the lipid ligand anandamide (AEA), affects cocaine-associated memory formation. METHODS: We applied behavioural, pharmacological and biochemical methods to detect cocaine-associated memory formation, eCBs in the dorsal dentate gyrus (dDG), and the activity of related enzymes. We further examined the roles of abnormal FAAH activity and AEA-CB1R signalling in the regulation of cocaine-associated memory formation and granule neuron dendritic structure alterations in the dDG through Western blotting, electron microscopy and immunofluorescence. RESULTS: In the present study, we found that cocaine induced a decrease in the level of FAAH in the dDG and increased the level of AEA. A high level of AEA activated cannabinoid type 1 receptors (CB1Rs) and further triggered CB1R signalling activation and granule neuron dendritic remodelling, and these effects were reversed by blockade of CB1Rs in the brain. Furthermore, inhibition of FAAH in the dDG markedly increased AEA levels and promoted cocaine-associated memory formation through CB1R signalling activation. CONCLUSIONS: Together, our findings demonstrate that the lipase FAAH influences CB1R signalling activation and granule neuron dendritic structure alteration in the dDG by regulating AEA levels and that AEA and AEA metabolism play a key role in cocaine-associated memory formation. Manipulation of AEA production may serve as a potential therapeutic strategy for drug addiction and relapse prevention.


Asunto(s)
Cannabinoides , Cocaína , Encéfalo/metabolismo , Cocaína/farmacología , Endocannabinoides/metabolismo , Humanos , Ligandos , Lipasa/metabolismo , Receptores de Cannabinoides/metabolismo , Recurrencia
7.
Neuropharmacology ; 213: 109076, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35500677

RESUMEN

Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are key regulators during the process of synaptic plasticity in major depression disorder (MDD). Synapse differentiation-induced gene 1 (SynDIG1) functions as an atypical AMPAR auxiliary subunit and regulates synaptic AMPAR content; however, the role of SynDIG1 in MDD remains elusive. In this study, we found that the SynDIG1 expression was significantly increased in the neurons of the nucleus accumbens (NAc) of male mice after chronic social defeat stress (CSDS). CSDS enhanced SynDIG1-GluA2 binding and promoted the surface expression of AMPAR subunit GluA2 in the NAc. Knockdown of SynDIG1 decreased the surface expression of GluA2 and reversed the alteration of dendrite spines in the neurons, eventually alleviating the depressive-like behaviors of the stressed mice. Moreover, intra-NAc injection of IP12, a specific peptide to disrupt the interaction of SynDIG1 with GluA2, rescued depressive-like behaviors. Collectively, SynDIG1 regulates the surface expression of GluA2 and dendritic remodeling in the NAc of male mice under CSDS, thus mediating the depressive-like behaviors.


Asunto(s)
Proteínas Portadoras/metabolismo , Núcleo Accumbens , Receptores AMPA , Animales , Depresión/etiología , Masculino , Ratones , Núcleo Accumbens/metabolismo , Receptores AMPA/metabolismo , Derrota Social , Sinapsis/metabolismo
8.
Curr Pharm Biotechnol ; 22(15): 2038-2047, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33645479

RESUMEN

AIMS: This research aimed at exploring potential new compounds to be used in the treatment of osteoporosis by Connectivity Map (CMap) and determining the role of fisetin in osteoporosis according to its effects on the PI3K-AKT signaling pathway in MC3T3-E1 pre-osteoblastic cells. METHODS: Microarray analysis was used to obtain the differentially expressed genes in published gene expression data. Potent compounds for osteoporosis therapy were discovered by CMap analysis. DAVID and Gene Set Enrichment Analysis (GSEA) were used to discover signaling pathways that connected to osteoporosis disease. Cell viability was evaluated by a CCK-8 assay. Quantitative realtime Polymerase Chain Reaction (qRT-PCR) and western blot analysis were used to test the mRNA and protein expressions related to the PI3K-AKT signaling pathway in MC3T3-E1 cells, respectively. RESULTS: CMap analysis identified fisetin as a promising compound for anti-osteoporosis treatment. DAVID and GSEA analysis showed that the PI3K-AKT signaling pathway was inactivated in osteoporosis. Cell experiments revealed that fisetin caused an elevation of cell viability, up-regulated the mRNA levels of the Runt-related transcription factor-2 (Runx2), Osterix (Osx), collagen type I 1 (Col1a1) and Osteoprotegerin (OPG) while down-regulated the nuclear factor-κB ligand (RANKL) mRNA level. DISCUSSION: The protein levels of Runx2, Col1a1 and Osteocalcin (OCN) were also increased by fisetin. Furthermore, fisetin activated the phosphoinositide-3-kinase/protein kinase B (PI3K-AKT) signaling pathway, and blocking this pathway by the inhibitor LY-294002 could impair fisetin's functions on proliferation, differentiation and OPG/RANKL expression ratio in the MC3T3-E1 cells. CONCLUSION: Our results demonstrated that fisetin could promote MC3T3-E1 cell proliferation, differentiation and increase OPG/RANKL expression ratio through activating the PI3K-AKT pathway, which has potential for the treatment of osteoporosis.


Asunto(s)
Flavonoles/farmacología , Osteoporosis , Transducción de Señal , Células 3T3 , Animales , Diferenciación Celular , Ratones , Osteoblastos/metabolismo , Osteogénesis , Osteoporosis/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
9.
Nat Commun ; 10(1): 506, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30705278

RESUMEN

Direct valorization of methane to its alcohol derivative remains a great challenge. Photocatalysis arises as a promising green strategy which could exploit hydroxyl radical (·OH) to accomplish methane activation. However, both the excessive ·OH from direct H2O oxidation and the neglect of methane activation on the material would cause deep mineralization. Here we introduce Cu species into polymeric carbon nitride (PCN), accomplishing photocatalytic anaerobic methane conversion for the first time with an ethanol productivity of 106 µmol gcat-1 h-1. Cu modified PCN could manage generation and in situ decomposition of H2O2 to produce ·OH, of which Cu species are also active sites for methane adsorption and activation. These features avoid excess ·OH for overoxidation and facilitate methane conversion. Moreover, a hypothetic mechanism through a methane-methanol-ethanol pathway is proposed, emphasizing the synergy of Cu species and the adjacent C atom in PCN for obtaining C2 product.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...