Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Biochem Biophys Res Commun ; 714: 149956, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38663095

RESUMEN

BACKGROUND: Maize is a major cereal crop world widely, however, the yield of maize is frequently limited by dehydration and even death of plants, which resulted from osmotic stress such as drought and salinity. Dissection of molecular mechanisms controlling stress tolerance will enable plant scientists and breeders to increase crops yield by manipulating key regulatory components. METHODS: The candidate OSR1 gene was identified by map-based cloning. The expression level of OSR1 was verified by qRT-PCR and digital PCR in WT and osr1 mutant. Electrophoretic mobility shift assay, transactivation activity assay, subcellular localization, transcriptome analysis and physiological characters measurements were conducted to analyze the function of OSR1 in osmotic stress resistance in maize. RESULTS: The osr1 mutant was significantly less sensitive to osmotic stress than the WT plants and displayed stronger water-holding capacity, and the OSR1 homologous mutant in Arabidopsis showed a phenotype similar with maize osr1 mutant. Differentially expressed genes (DEGs) were identified between WT and osr1 under osmotic stress by transcriptome analysis, the expression levels of many genes, such as LEA, auxin-related factors, PPR family members, and TPR family members, changed notably, which may primarily involve in osmotic stress or promote root development. CONCLUSIONS: OSR1 may serve as a negative regulatory factor in response to osmotic stress in maize. The present study sheds new light on the molecular mechanisms of osmotic stress in maize.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Presión Osmótica , Proteínas de Plantas , Factores de Transcripción , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Mutación , Estrés Fisiológico/genética , Perfilación de la Expresión Génica
2.
Cell Mol Gastroenterol Hepatol ; 17(6): 923-937, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38340809

RESUMEN

BACKGROUND & AIMS: Epithelial disruption in eosinophilic esophagitis (EoE) encompasses both impaired differentiation and diminished barrier integrity. We have shown that lysyl oxidase (LOX), a collagen cross-linking enzyme, is up-regulated in the esophageal epithelium in EoE. However, the functional roles of LOX in the esophageal epithelium remains unknown. METHODS: We investigated roles for LOX in the human esophageal epithelium using 3-dimensional organoid and air-liquid interface cultures stimulated with interleukin (IL)13 to recapitulate the EoE inflammatory milieu, followed by single-cell RNA sequencing, quantitative reverse-transcription polymerase chain reaction, Western blot, histology, and functional analyses of barrier integrity. RESULTS: Single-cell RNA sequencing analysis on patient-derived organoids revealed that LOX was induced by IL13 in differentiated cells. LOX-overexpressing organoids showed suppressed basal and up-regulated differentiation markers. In addition, LOX overexpression enhanced junctional protein genes and transepithelial electrical resistance. LOX overexpression restored the impaired differentiation and barrier function, including in the setting of IL13 stimulation. Transcriptome analyses on LOX-overexpressing organoids identified an enriched bone morphogenetic protein (BMP) signaling pathway compared with wild-type organoids. In particular, LOX overexpression increased BMP2 and decreased the BMP antagonist follistatin. Finally, we found that BMP2 treatment restored the balance of basal and differentiated cells. CONCLUSIONS: Our data support a model whereby LOX exhibits noncanonical roles as a signaling molecule important for epithelial homeostasis in the setting of inflammation via activation of the BMP pathway in the esophagus. The LOX/BMP axis may be integral in esophageal epithelial differentiation and a promising target for future therapies.


Asunto(s)
Diferenciación Celular , Esofagitis Eosinofílica , Organoides , Proteína-Lisina 6-Oxidasa , Humanos , Esofagitis Eosinofílica/patología , Esofagitis Eosinofílica/metabolismo , Proteína-Lisina 6-Oxidasa/metabolismo , Proteína-Lisina 6-Oxidasa/genética , Organoides/metabolismo , Organoides/patología , Interleucina-13/metabolismo , Interleucina-13/farmacología , Mucosa Esofágica/patología , Mucosa Esofágica/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Esófago/patología , Transducción de Señal , Análisis de la Célula Individual , Proteínas Morfogenéticas Óseas/metabolismo
3.
JCI Insight ; 8(23)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37883185

RESUMEN

Intestinal epithelial transit-amplifying cells are essential stem progenitors required for intestinal homeostasis, but their rapid proliferation renders them vulnerable to DNA damage from radiation and chemotherapy. Despite these cells' critical roles in intestinal homeostasis and disease, few studies have described genes that are essential to transit-amplifying cell function. We report that RNA methyltransferase-like 3 (METTL3) is required for survival of transit-amplifying cells in the murine small intestine. Transit-amplifying cell death after METTL3 deletion was associated with crypt and villus atrophy, loss of absorptive enterocytes, and uniform wasting and death in METTL3-depleted mice. Sequencing of polysome-bound and methylated RNAs in enteroids and in vivo demonstrated decreased translation of hundreds of methylated transcripts after METTL3 deletion, particularly transcripts involved in growth factor signal transduction such as Kras. Further investigation verified a relationship between METTL3 and Kras methylation and protein levels in vivo. Our study identifies METTL3 as an essential factor supporting the homeostasis of small intestinal tissue via direct maintenance of transit-amplifying cell survival. We highlight the crucial role of RNA modifications in regulating growth factor signaling in the intestine with important implications for both homeostatic tissue renewal and epithelial regeneration.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Células Madre , Animales , Ratones , Proliferación Celular/fisiología , Supervivencia Celular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Intestinos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , ARN/metabolismo , Transducción de Señal/fisiología , Células Madre/metabolismo
4.
Bio Protoc ; 13(18): e4825, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37753470

RESUMEN

Inflammation of the gastrointestinal tract is a prevalent pathology in diseases such as inflammatory bowel disease (IBD). Currently, there are no therapies to prevent IBD, and available therapies to treat IBD are often sub-optimal. Thus, an unmet need exists to better understand the molecular mechanisms underlying intestinal tissue responses to damage and regeneration. The recent development of single-cell RNA (sc-RNA) sequencing-based techniques offers a unique opportunity to shed light on novel signaling pathways and cellular states that govern tissue adaptation or maladaptation across a broad spectrum of diseases. These approaches require the isolation of high-quality cells from tissues for downstream transcriptomic analyses. In the context of intestinal biology, there is a lack of protocols that ensure the isolation of epithelial and non-epithelial compartments simultaneously with high-quality yield. Here, we report two protocols for the isolation of epithelial and stromal cells from mouse and human colon tissues under inflammatory conditions. Specifically, we tested the feasibility of the protocols in a mouse model of dextran sodium sulfate (DSS)-induced colitis and in human biopsies from Crohn's patients. We performed sc-RNA sequencing analysis and demonstrated that the protocol preserves most of the epithelial and stromal cell types found in the colon. Moreover, the protocol is suitable for immunofluorescence staining of surface markers for epithelial, stromal, and immune cell lineages for flow cytometry analyses. This optimized protocol will provide a new resource for scientists to study complex tissues such as the colon in the context of tissue damage and regeneration. Key features • This protocol allows the isolation of epithelial and stromal cells from colon tissues. • The protocol has been optimized for tissues under inflammatory conditions with compromised cell viability. • This protocol is suitable for experimental mouse models of colon inflammation and human biopsies.

5.
Gastro Hep Adv ; 2(6): 830-842, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37736163

RESUMEN

BACKGROUND AND AIMS: A key histopathological feature of inflammatory bowel disease is damage to the mucosa, including breakdown of the epithelial barrier. Human enteroids and colonoids are a critical bench-to-bedside tool for studying the epithelium in inflammatory bowel disease. The goal of the current study was to define transcriptional differences in healthy versus diseased subjects that are sustained in enteroids and colonoids, including from disease-spared tissue. METHODS: Biopsies and matching enteroid or colonoid cultures from pediatric patients with ileal Crohn disease (N = 6) and control subjects (N = 17) were subjected to RNA sequencing followed by bioinformatic and machine learning analyses. Late passage enteroids were exposed to cytokines to assess durable transcriptional differences. RESULTS: We observed substantial overlap of pathways upregulated in Crohn disease in enteroids and ileal biopsies, as well as colonoids and rectal biopsies. KEGG pathways for cytokine-cytokine receptor interaction, chemokine signaling, protein export, and Toll-like receptor signaling were upregulated in both ileal and rectal biopsies, as well as enteroids and colonoids. In vitro cytokine exposure reactivated genes previously increased in biopsies. Machine learning predicted biopsy location (100% accuracy) and donor disease status (83% accuracy). A random forest classifier generated using ileal enteroids identified rectal colonoids from ileal Crohn disease subjects with 80% accuracy. CONCLUSION: We confirmed transcriptional profiles of Crohn disease biopsies are expressed in enteroids and colonoids. Furthermore, transcriptomic data from disease-spared rectal tissue can identify patients with ileal Crohn disease. Our data support the use of patient enteroids and colonoids as critical translational tools for the study of inflammatory bowel disease.

6.
Nat Commun ; 14(1): 4384, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474494

RESUMEN

The unique dumbbell-shape of grass guard cells (GCs) is controlled by their cell walls which enable their rapid responses to the environment. The molecular mechanisms regulating the synthesis and assembly of GC walls are as yet unknown. Here we have identified BZU3, a maize gene encoding UDP-glucose 4-epimerase that regulates the supply of UDP-glucose during GC wall synthesis. The BZU3 mutation leads to significant decreases in cellular UDP-glucose levels. Immunofluorescence intensities reporting levels of cellulose and mixed-linkage glucans are reduced in the GCs, resulting in impaired local wall thickening. BZU3 also catalyzes the epimerization of UDP-N-acetylgalactosamine to UDP-N-acetylglucosamine, and the BZU3 mutation affects N-glycosylation of proteins that may be involved in cell wall synthesis and signaling. Our results suggest that the spatiotemporal modulation of BZU3 plays a dual role in controlling cell wall synthesis and glycosylation via controlling UDP-glucose/N-acetylglucosamine homeostasis during stomatal morphogenesis. These findings provide insights into the mechanisms controlling formation of the unique morphology of grass stomata.


Asunto(s)
Racemasas y Epimerasas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Racemasas y Epimerasas/metabolismo , Glicosilación , Acetilglucosamina/metabolismo , Poaceae/metabolismo , Pared Celular/metabolismo , Uridina Difosfato/metabolismo
7.
bioRxiv ; 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37066277

RESUMEN

Intestinal epithelial transit amplifying cells are essential stem progenitors required for intestinal homeostasis, but their rapid proliferation renders them vulnerable to DNA damage from radiation and chemotherapy. Despite their critical roles in intestinal homeostasis and disease, few studies have described genes that are essential to transit amplifying cell function. We report that the RNA methyltransferase, METTL3, is required for survival of transit amplifying cells in the murine small intestine. Transit amplifying cell death after METTL3 deletion was associated with crypt and villus atrophy, loss of absorptive enterocytes, and uniform wasting and death in METTL3-depleted mice. Ribosome profiling and sequencing of methylated RNAs in enteroids and in vivo demonstrated decreased translation of hundreds of unique methylated transcripts after METTL3 deletion, particularly transcripts involved in growth factor signal transduction such as Kras. Further investigation confirmed a novel relationship between METTL3 and Kras methylation and protein levels in vivo. Our study identifies METTL3 as an essential factor supporting the homeostasis of small intestinal tissue via direct maintenance of transit amplifying cell survival. We highlight the crucial role of RNA modifications in regulating growth factor signaling in the intestine, with important implications for both homeostatic tissue renewal and epithelial regeneration.

8.
bioRxiv ; 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37034590

RESUMEN

Background & Aims: Epithelial disruption in eosinophilic esophagitis (EoE) encompasses both impaired differentiation and diminished barrier integrity. We have shown that lysyl oxidase (LOX), a collagen cross-linking enzyme, is upregulated in the esophageal epithelium in EoE. However, the functional roles of LOX in the esophageal epithelium remains unknown. Methods: We investigated roles for LOX in the human esophageal epithelium using 3-dimensional organoid and air-liquid interface cultures stimulated with interleukin (IL)-13 to recapitulate the EoE inflammatory milieu, followed by single-cell RNA sequencing, quantitative reverse transcription-polymerase chain reaction, western blot, histology, and functional analyses of barrier integrity. Results: Single-cell RNA sequencing analysis on patient-derived organoids revealed that LOX was induced by IL-13 in differentiated cells. LOX-overexpressing organoids demonstrated suppressed basal and upregulated differentiation markers. Additionally, LOX overexpression enhanced junctional protein genes and transepithelial electrical resistance. LOX overexpression restored the impaired differentiation and barrier function, including in the setting of IL-13 stimulation. Transcriptome analyses on LOX-overexpressing organoids identified enriched bone morphogenetic protein (BMP) signaling pathway compared to wild type organoids. Particularly, LOX overexpression increased BMP2 and decreased BMP antagonist follistatin. Finally, we found that BMP2 treatment restored the balance of basal and differentiated cells. Conclusions: Our data support a model whereby LOX exhibits non-canonical roles as a signaling molecule important for epithelial homeostasis in the setting of inflammation via activation of BMP pathway in esophagus. The LOX/BMP axis may be integral in esophageal epithelial differentiation and a promising target for future therapies.

10.
Indian J Tuberc ; 69(4): 482-495, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36460380

RESUMEN

BACKGROUND: Tuberculosis (TB) is a global infectious disease, but there is no ideal vaccine against TB except the Bacille Calmette-Guérin (BCG) vaccine. METHODS: Herein, 25 candidate peptides were predicted from four antigens of Mycobacterium tuberculosis based on their high-affinity binding capacity for the human leukocyte antigen (HLA) DRB1∗0101. Three T-helper 1 (Th1) immunodominant peptides (Ag85B12-26, CFP2112-26, and PPE18149-163) were identified by ELISPOT assays in the humanized C57BL/6 mice. They resulted in a novel Th1 peptide-based vaccine ACP named by the first letter of the three peptides. In addition, the protective efficacy was evaluated in humanized or wild-type C57BL/6 mice and the humoral and cellular immune responses were confirmed in vitro. RESULTS: Compared with the PBS group, the ACP vaccinated mice showed slight decreases in colony-forming units (CFUs) and pathological lesions. However, when using it as a booster, the ACP vaccine did not significantly enhance the protective efficacy of BCG in humanized or wild-type mice. Interestingly, we found that ACP vaccination significantly increased the number of interferon-γ positive (IFN-γ+) T lymphocytes and the levels of IFN-γ cytokines as well as antibodies. Furthermore, the IL-2 level was significantly higher in humanized mice prime-boosted with BCG and ACP. CONCLUSIONS: Our results suggested that ACP vaccination could stimulate higher levels of cytokines and antibodies but failed to improve the protective efficacy of BCG in mice, indicating that the secretion level of IFN-γ may not be positively correlated with the protection efficiency of the vaccine. These findings provided important information on the feasibility of a peptide vaccine as a booster for enhancing the protective efficacy of BCG.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Ganglionar , Humanos , Ratones , Animales , Ratones Endogámicos C57BL , Vacuna BCG , Vacunas de Subunidad , Interferón gamma , Citocinas
11.
J Anal Methods Chem ; 2022: 7015311, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35800972

RESUMEN

Nucleotide sugars, the activated forms of monosaccharides, are important intermediates of carbohydrate metabolism in all organisms. Here, we describe a method for the detection and quantification of UDP-glucose and UDP-galactose in maize in order to compare their metabolism in both wild-type and mutated plants. Triple quadrupole operating in a multiple reaction monitoring mode was used to quantify nucleotide sugars. The limits of detection for UDP-glucose and UDP-galactose were 0.50 and 0.70 ng·mL-1, respectively. The recoveries of the method ranged from 98.3% to 103.6% with the relative standard deviations less than 6.3%. To prove the applicability of this method, we analyzed several sets of maize extracts obtained from different cultivars grown under standardized greenhouse conditions. All the results demonstrated the suitability of the developed method to quantify UDP-glucose and UDP-galactose in maize extracts.

12.
BMC Plant Biol ; 22(1): 248, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35590269

RESUMEN

BACKGROUND: Leaf senescence, the final stage of leaf growth and development, is regulated by numerous internal factors and environmental cues. Ethylene is one of the key senescence related hormones, but the underlying molecular mechanism of ethylene-induced leaf senescence remains poorly understood. RESULTS: In this study, we identified one AT-hook like (AHL) protein, AHL9, as a positive regulator of leaf senescence in Arabidopsis thaliana. Overexpression of AHL9 significantly accelerates age-related leaf senescence and promotes dark-induced leaf chlorosis. The early senescence phenotype observed in AHL9 overexpressing lines is inhibited by the ethylene biosynthesis inhibitor aminooxyacetic acid suggesting the involvement of ethylene in the AHL9-associated senescence. RNA-seq and quantitative reverse transcription PCR (qRT-PCR) data identified numerous senescence-associated genes differentially expressed in leaves of AHL9 overexpressing transgenic plants. CONCLUSIONS: Our investigation demonstrates that AHL9 functions in accelerating the leaf senescence process via ethylene synthesis or signalling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Senescencia de la Planta , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética
13.
Methods Mol Biol ; 2370: 97-113, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34611866

RESUMEN

Glycan profiling is a common strategy that is used to determine the distribution of N-linked glycans, O-linked glycans and glycolipid associated complex carbohydrate structures that are part of various cell and tissue sources. Such data are central to our understanding of functional glycomics, and this knowledge can also be used for pathway construction and other applications in the field of Systems Glycobiology. Glycans released from cell/tissue samples are often studied in their free-form. They can also be functionalized with aglycones like 2-aminobenzamide (2AB) and procainamide to enhance separation and improve ionization during liquid chromatography/mass spectrometry. Additionally, these released glycans may be permethylated in order to improve glycan quantitation. In such work, besides studying the glycans in a single sample, there is also interest in comparing multiple samples in order to determine underlying similarities and differences, for example in terms of specific epitopes that are changed when cells of the same origin differentiate along different pathways. The current chapter describes the development and usage of cGlyco ("comparative Glycomics"), an open-source program that can be used to compare data from multiple mass spectrometry runs. As an example, we apply cGlyco to compare the glycan profile of multiple MALDI-TOF glycomics profiling data collected by core-C of the Consortium for Functional Glycomics (CFG).


Asunto(s)
Glicómica , Cromatografía Liquida , Glicoproteínas , Polisacáridos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
14.
BMC Infect Dis ; 21(1): 1183, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819019

RESUMEN

BACKGROUND: We investigate the long-term effects of SARS-CoV on patients' lung and immune systems 15 years post-infection. SARS-CoV-2 pandemic is ongoing however, another genetically related beta-coronavirus SARS-CoV caused an epidemic in 2003-2004. METHODS: We enrolled 58 healthcare workers from Peking University People's Hospital who were infected with SARS-CoV in 2003. We evaluated lung damage by mMRC score, pulmonary function tests, and chest CT. Immune function was assessed by their serum levels of globin, complete components, and peripheral T cell subsets. ELISA was used to detect SARS-CoV-specific IgG antibodies in sera. RESULTS: After 15 years of disease onset, 19 (36.5%), 8 (34.6%), and 19 (36.5%) subjects had impaired DL (CO), RV, and FEF25-75, respectively. 17 (30.4%) subjects had an mMRC score ≥ 2. Fourteen (25.5%) cases had residual CT abnormalities. T regulatory cells were a bit higher in the SARS survivors. IgG antibodies against SARS S-RBD protein and N protein were detected in 11 (18.97%) and 12 (20.69%) subjects, respectively. Subgroup analysis revealed that small airway dysfunction and CT abnormalities were more common in the severe group than in the non-severe group (57.1% vs 22.6%, 54.5% vs 6.1%, respectively, p < 0.05). CONCLUSIONS: SARS-CoV could cause permanent damage to the lung, which requires early pulmonary rehabilitation. The long-lived immune memory response against coronavirus requires further studies to assess the potential benefit. Trial registration ClinicalTrials.gov, NCT03443102. Registered prospectively on 25 January 2018.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Humanos , Pulmón , Pandemias , SARS-CoV-2
15.
Opt Lett ; 46(22): 5558-5561, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34780402

RESUMEN

We find that in a suitably designed photonic crystal (PC) certain high-order photonic bands are less affected by the refractive-index ratio (RIR) than low-order bands, enabling the realization of a robust and complete two-dimensional (2D) photonic bandgap in a moderate refractive-index-ratio PC. A detailed theoretical investigation of low- and high-order bandgaps in a series of PCs with different configurations is performed that shows that high-order bands may favor substantial complete photonic bandgaps (CPBGs) for systems with a moderate RIR. Furthermore, the importance of the geometry and structural parameters on achieving a high-order CPBG is found. Specifically, a hexagonal lattice PC of annular-hole-peripheral connecting rods is proposed, which can support a CPBG with a refractive-index ratio (RIR) as low as nhigh:nlow=2.1; to the best of our knowledge, this is the lowest RIR used to obtain a 2D CPBG in a PC.

16.
Front Immunol ; 12: 666290, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33981313

RESUMEN

Background: Tuberculosis (TB) is still a global infectious disease that seriously threatens human beings. The only licensed TB vaccine Bacille Calmette-Guérin (BCG)'s protective efficacy varies significantly among populations and regions. It is very urgent to develop more effective vaccines. Methods: In this study, eleven candidate proteins of Mycobacterium tuberculosis were selected to predict peptides with high-affinity binding capacity for the HLA-DRB1*01:01 molecule. The immunodominant peptides were identified with the enzyme-linked immunospot assay (ELISPOT) and linked in silico to result in a novel polypeptide vaccine in Escherichia coli cells. The vaccine's protective efficacy was evaluated in humanized and wild-type C57BL/6 mice. The potential immune protective mechanisms were explored with Enzyme-linked Immunosorbent Assay (ELISA), flow cytometry, and ELISPOT. Results: Six immunodominant peptides screened from 50 predicted peptides were used to construct a new polypeptide vaccine named MP3RT. After challenge with M. tuberculosis, the colony-forming units (CFUs), lung lesion area, and the number of inflammatory cells in humanized mice rather than wild-type mice vaccinated with MP3RT were significantly lower than these in mice immunized with PBS. The humanized mice vaccinated with MP3RT revealed significant increases in IFN-γ cytokine production, IFN-γ+ T lymphocytes, CD3+IFN-γ+ T lymphocytes, and the MP3RT-specific IgG antibody. Conclusions: Taken together, MP3RT is a promising peptides-based TB vaccine characterized by inducing high levels of IFN-γ and CD3+IFN-γ+ T lymphocytes in humanized mice. These new findings will lay a foundation for the development of peptides-based vaccines against TB.


Asunto(s)
Mycobacterium tuberculosis/inmunología , Péptidos/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/prevención & control , Animales , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/química , Antígenos Bacterianos/inmunología , Modelos Animales de Enfermedad , Humanos , Epítopos Inmunodominantes/química , Epítopos Inmunodominantes/genética , Epítopos Inmunodominantes/inmunología , Interferón gamma/inmunología , Linfocitos/inmunología , Ratones , Ratones Transgénicos , Péptidos/administración & dosificación , Péptidos/química , Péptidos/genética , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas contra la Tuberculosis/química , Vacunas contra la Tuberculosis/genética , Vacunación , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/química , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología
17.
Glycobiology ; 31(3): 173-180, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32776087

RESUMEN

Glycan biosynthesis on cell surface proteins and lipids is orchestrated by different classes of enzymes and proteins including the following: i. glycosyltransferases that add saccharides; ii. glycosidases that trim glycans; iii. conserved oligomeric golgi complex members that regulate intracellular transport; iv. enzymes aiding the biosynthesis of sugar-nucleotides; and v. sulfotransferases. This manuscript describes a pooled "glycoGene CRISPR" lentiviral library that targets 347 human genes involved in the above processes. Approximately 10 single-guide RNA (sgRNA) are included against each glycogene, with the putative editing site spanning the length of the target. A data analysis scheme is presented in order to determine glycosylation pathways regulating biological processes. As proof of principle, forward genetic screen results are presented to identify penetrating glycogenes that regulate the binding of P-/E-selectin, anti-sialyl Lewis-X monoclonal antibody HECA-452 and selected lectins (phaseolus vulgaris leucoagglutinin, vicia villosa lectin, peanut agglutinin) to HL-60 promyelocytic cells. Besides validating previously established biology, the study identifies three enzymes, PAPSS1, SLC35B2 and TPST2, as key molecules regulating sulfation of the major P-selectin glycoprotein ligand-1 in leukocytes. Approximately 80-90% of the sgRNA used in this study displayed high editing efficiency, and the CRISPR library picked up entire gene sets regulating specific biosynthetic pathways rather than only isolated genes. These data suggest that the glycoGene CRISPR library contains high-efficiency sgRNA. Further, this resource could be useful for the rapid screening of glycosylation-related genes and pathways that control lectin recognition in a variety of contexts.


Asunto(s)
Sistemas CRISPR-Cas/genética , Lectinas/metabolismo , Polisacáridos/biosíntesis , Sitios de Unión , Biblioteca de Genes , Glicosilación , Células HL-60 , Humanos , Lectinas/química
18.
Beilstein J Org Chem ; 16: 2645-2662, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178355

RESUMEN

Systems glycobiology aims to provide models and analysis tools that account for the biosynthesis, regulation, and interactions with glycoconjugates. To facilitate these methods, there is a need for a clear glycan representation accessible to both computers and humans. Linear Code, a linearized and readily parsable glycan structure representation, is such a language. For this reason, Linear Code was adapted to represent reaction rules, but the syntax has drifted from its original description to accommodate new and originally unforeseen challenges. Here, we delineate the consensuses and inconsistencies that have arisen through this adaptation. We recommend options for a consensus-based extension of Linear Code that can be used for reaction rule specification going forward. Through this extension and specification of Linear Code to reaction rules, we aim to minimize inconsistent symbology thereby making glycan database queries easier. With a clear guide for generating reaction rule descriptions, glycan synthesis models will be more interoperable and reproducible thereby moving glycoinformatics closer to compliance with FAIR standards. Here, we present Linear Code for Reaction Rules (LiCoRR), version 1.0, an unambiguous representation for describing glycosylation reactions in both literature and code.

19.
Science ; 369(6511): 1603-1607, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32732280

RESUMEN

The ongoing coronavirus disease 2019 (COVID-19) pandemic has prioritized the development of small-animal models for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We adapted a clinical isolate of SARS-CoV-2 by serial passaging in the respiratory tract of aged BALB/c mice. The resulting mouse-adapted strain at passage 6 (called MASCp6) showed increased infectivity in mouse lung and led to interstitial pneumonia and inflammatory responses in both young and aged mice after intranasal inoculation. Deep sequencing revealed a panel of adaptive mutations potentially associated with the increased virulence. In particular, the N501Y mutation is located at the receptor binding domain (RBD) of the spike protein. The protective efficacy of a recombinant RBD vaccine candidate was validated by using this model. Thus, this mouse-adapted strain and associated challenge model should be of value in evaluating vaccines and antivirals against SARS-CoV-2.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Modelos Animales de Enfermedad , Ratones , Pandemias/prevención & control , Neumonía Viral/prevención & control , Vacunas Virales/inmunología , Administración Intranasal , Enzima Convertidora de Angiotensina 2 , Animales , Betacoronavirus/genética , Betacoronavirus/patogenicidad , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/inmunología , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunogenicidad Vacunal , Pulmón/virología , Enfermedades Pulmonares Intersticiales/virología , Ratones Endogámicos BALB C , Ratones Transgénicos , Mutación , Peptidil-Dipeptidasa A/genética , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Vacunas Virales/administración & dosificación , Virulencia/genética
20.
Cell Host Microbe ; 28(1): 124-133.e4, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32485164

RESUMEN

Since December 2019, a novel coronavirus SARS-CoV-2 has emerged and rapidly spread throughout the world, resulting in a global public health emergency. The lack of vaccine and antivirals has brought an urgent need for an animal model. Human angiotensin-converting enzyme II (ACE2) has been identified as a functional receptor for SARS-CoV-2. In this study, we generated a mouse model expressing human ACE2 (hACE2) by using CRISPR/Cas9 knockin technology. In comparison with wild-type C57BL/6 mice, both young and aged hACE2 mice sustained high viral loads in lung, trachea, and brain upon intranasal infection. Although fatalities were not observed, interstitial pneumonia and elevated cytokines were seen in SARS-CoV-2 infected-aged hACE2 mice. Interestingly, intragastric inoculation of SARS-CoV-2 was seen to cause productive infection and lead to pulmonary pathological changes in hACE2 mice. Overall, this animal model described here provides a useful tool for studying SARS-CoV-2 transmission and pathogenesis and evaluating COVID-19 vaccines and therapeutics.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Pandemias , Neumonía Viral , Envejecimiento , Enzima Convertidora de Angiotensina 2 , Animales , Encéfalo/virología , COVID-19 , Sistemas CRISPR-Cas , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Citocinas/sangre , Técnicas de Sustitución del Gen , Pulmón/patología , Pulmón/virología , Enfermedades Pulmonares Intersticiales/patología , Nariz/virología , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/patología , Neumonía Viral/virología , ARN Viral/análisis , SARS-CoV-2 , Estómago/virología , Tráquea/virología , Carga Viral , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...