Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Ageing Res Rev ; 98: 102339, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38754634

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disorder that affects the cerebral cortex and hippocampus, and is characterised by progressive cognitive decline and memory loss. A recent report of a patient carrying a novel gain-of-function variant of RELN (H3447R, termed RELN-COLBOS) who developed resilience against presenilin-linked autosomal-dominant AD (ADAD) has generated enormous interest. The RELN-COLBOS variant enhances interactions with the apolipoprotein E receptor 2 (ApoER2) and very-low-density lipoprotein receptor (VLDLR), which are associated with delayed AD onset and progression. These findings were validated in a transgenic mouse model. Reelin is involved in neurodevelopment, neurogenesis, and neuronal plasticity. The evidence accumulated thus far has demonstrated that the Reelin pathway links apolipoprotein E4 (ApoE4), amyloid-ß (Aß), and tubulin-associated unit (Tau), which are key proteins that have been implicated in AD pathogenesis. Reelin and key components of the Reelin pathway have been highlighted as potential therapeutic targets and biomarkers for AD.

2.
J Transl Med ; 22(1): 430, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715084

RESUMEN

Passive immunotherapy with specific antibodies targeting Amyloid ß (Aß) peptide or tubulin-associated unit (tau) protein has emerged as a promising therapeutic approach in Alzheimer's disease (AD). However, in a recent phase III clinical study, Sperling et al. (N Engl J Med 10.1056/NEJMoa2305032, 2023) reported that solanezumab, a monoclonal antibody targeting Aß peptide, failed to slow cognitive decline in AD patients. Previously, three other anti-Aß antibodies, bapineuzumab, crenezumab, and gantenerumab, have also failed to show similar beneficial effects. In addition, three humanized antibodies targeting tau protein failed in their phase II trials. However, other anti-Aß antibodies, such as lecanemab (a humanized mAb binds to soluble Aß protofibrils), donanemab (a humanized mAb binds to insoluble, N-terminal truncated form of Aß peptides) and aducanumab (a human mAb binds to the aggregated form of Aß), have been shown to slow the decline of cognitive functions in early stage AD patients. The specific targets used in passive immunotherapy in these clinical trials may explain the divergent clinical outcomes. There are several challenges and limitations of passive immunotherapy using anti-Aß antibodies and long term longitudinal studies are needed to assess their efficacy, side effects and cost effectiveness in a wider spectrum of subjects, from pre-dementia to more advanced dementia. A combination therapeutic approach using both anti-Aß antibodies and other pharmaceutical agents should also be explored.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/inmunología , Inmunización Pasiva , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/inmunología , Anticuerpos Monoclonales/uso terapéutico , Animales
3.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731862

RESUMEN

There are currently no disease-modifying therapies for Parkinson's disease (PD), a progressive neurodegenerative disorder associated with dopaminergic neuronal loss. There is increasing evidence that endogenous dopamine (DA) can be a pathological factor in neurodegeneration in PD. Tyrosine hydroxylase (TH) is the key rate-limiting enzyme for DA generation. Drugs that inhibit TH, such as alpha-methyltyrosine (α-MT), have recently been shown to protect against neurodegeneration in various PD models. DA receptor agonists can activate post-synaptic DA receptors to alleviate DA-deficiency-induced PD symptoms. However, DA receptor agonists have no therapeutic effects against neurodegeneration. Thus, a combination therapy with DA receptor agonists plus TH inhibitors may be an attractive therapeutic approach. TH inhibitors can protect and promote the survival of remaining dopaminergic neurons in PD patients' brains, whereas DA receptor agonists activate post-synaptic DA receptors to alleviate PD symptoms. Additionally, other PD drugs, such as N-acetylcysteine (NAC) and anticholinergic drugs, may be used as adjunctive medications to improve therapeutic effects. This multi-drug cocktail may represent a novel strategy to protect against progressive dopaminergic neurodegeneration and alleviate PD disease progression.


Asunto(s)
Agonistas de Dopamina , Enfermedad de Parkinson , Tirosina 3-Monooxigenasa , Animales , Humanos , Dopamina/metabolismo , Agonistas de Dopamina/uso terapéutico , Agonistas de Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Quimioterapia Combinada , Inhibidores Enzimáticos/uso terapéutico , Inhibidores Enzimáticos/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Tirosina 3-Monooxigenasa/antagonistas & inhibidores , Tirosina 3-Monooxigenasa/metabolismo
5.
Can J Neurol Sci ; : 1-16, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38267254

RESUMEN

BACKGROUND: Genetic association studies have not produced consistent results in restless legs syndrome (RLS). OBJECTIVES: To conduct a systematic review on genetic association studies in RLS to highlight the common gene variants and ethnic differences. METHODOLOGY: We conducted Pubmed, Embase, and Cochrane search using terms "Genetic association studies" and "restless legs syndrome" for candidate gene-based studies. Out of the initial 43 studies, 18 case control studies (from 2012 to 2022) were included. Thirteen studies including 10794 Caucasian subjects (4984 RLS cases and 5810 controls) and five studies involving 2009 Asian subjects (796 RLS cases and 1213 controls) were tabulated and analyzed. In addition, three Genome-Wide Association Studies (GWAS) in Asians and Europeans/Caucasians were included for comparisons. RESULTS: In the Asian population, gene variants in BST1, SNCA Rep1, IL1B, BTBD9, and MAP2K5/SKOR1 increased the risk of RLS (odds ratio range 1.2-2.8). In Caucasian populations, examples of variants that were associated with an increased risk of RLS (odds ratio range 1.1-1.9) include those in GABRR3 TOX3, ADH1B, HMOX1, GLO1, DCDC2C, BTBD9, SKOR1, and SETBP1. Based on the meta-analysis of GWAS studies, the rs9390170 variant in UTRN gene was identified to be a novel genetic marker for RLS in Asian cohorts, whereas rs113851554 in MEIS1 gene was a strong genetic factor among the >20 identified gene variants for RLS in Caucasian populations. CONCLUSION: Our systemic review demonstrates that multiple genetic variants modulate risk of RLS in Caucasians (such as MEIS1 BTBD9, MAP2K5) and in Asians (such as BTBD9, MAP2K5, and UTRN).

6.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37762040

RESUMEN

Neurodegenerative diseases are characterized by the progressive degeneration or death of neurons in the central or peripheral nervous system [...].


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/terapia , Neuronas , Sistema Nervioso Periférico
7.
Transl Neurodegener ; 12(1): 44, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37718439

RESUMEN

A pathological feature of Parkinson's disease (PD) is the progressive loss of dopaminergic neurons and decreased dopamine (DA) content in the substantia nigra pars compacta in PD brains. DA is the neurotransmitter of dopaminergic neurons. Accumulating evidence suggests that DA interacts with environmental and genetic factors to contribute to PD pathophysiology. Disturbances of DA synthesis, storage, transportation and metabolism have been shown to promote neurodegeneration of dopaminergic neurons in various PD models. DA is unstable and can undergo oxidation and metabolism to produce multiple reactive and toxic by-products, including reactive oxygen species, DA quinones, and 3,4-dihydroxyphenylacetaldehyde. Here we summarize and highlight recent discoveries on DA-linked pathophysiologic pathways, and discuss the potential protective and therapeutic strategies to mitigate the complications associated with DA.


Asunto(s)
Dopamina , Enfermedad de Parkinson , Humanos , Encéfalo , Neuronas Dopaminérgicas
8.
Cell Rep Med ; 4(6): 101075, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37343522

RESUMEN

Neel et al. identified pathophysiologic clues linking gasdermin-E (GSDME) with frontotemporal dementia and amyotrophic lateral sclerosis.1 Therapeutic studies targeting GSDME may provide a viable approach for neurodegenerative diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Humanos , Gasderminas
9.
Cell Mol Life Sci ; 79(12): 599, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36409355

RESUMEN

BACKGROUND: Parkinson's disease (PD) is characterized by selective and progressive dopamine (DA) neuron loss in the substantia nigra and other brain regions, with the presence of Lewy body formation. Most PD cases are sporadic, whereas monogenic forms of PD have been linked to multiple genes, including Leucine kinase repeat 2 (LRRK2) and PTEN-induced kinase 1 (PINK1), two protein kinase genes involved in multiple signaling pathways. There is increasing evidence to suggest that endogenous DA and DA-dependent neurodegeneration have a pathophysiologic role in sporadic and familial PD. METHODS: We generated patient-derived dopaminergic neurons and human midbrain-like organoids (hMLOs), transgenic (TG) mouse and Drosophila models, expressing both mutant and wild-type (WT) LRRK2 and PINK1. Using these models, we examined the effect of LRRK2 and PINK1 on tyrosine hydroxylase (TH)-DA pathway. RESULTS: We demonstrated that PD-linked LRRK2 mutations were able to modulate TH-DA pathway, resulting in up-regulation of DA early in the disease which subsequently led to neurodegeneration. The LRRK2-induced DA toxicity and degeneration were abrogated by wild-type (WT) PINK1 (but not PINK1 mutations), and early treatment with a clinical-grade drug, α-methyl-L-tyrosine (α-MT), a TH inhibitor, was able to reverse the pathologies in human neurons and TG Drosophila models. We also identified opposing effects between LRRK2 and PINK1 on TH expression, suggesting that functional balance between these two genes may regulate the TH-DA pathway. CONCLUSIONS: Our findings highlight the vital role of the TH-DA pathway in PD pathogenesis. LRRK2 and PINK1 have opposing effects on the TH-DA pathway, and its balance affects DA neuron survival. LRRK2 or PINK1 mutations can disrupt this balance, promoting DA neuron demise. Our findings provide support for potential clinical trials using TH-DA pathway inhibitors in early or prodromic PD.


Asunto(s)
Proteínas de Drosophila , Enfermedad de Parkinson , Ratones , Animales , Humanos , Dopamina/metabolismo , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Enfermedad de Parkinson/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ratones Transgénicos , Drosophila/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
10.
Sci Signal ; 15(748): eabk3411, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35998231

RESUMEN

Gain-of-function mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are common in familial forms of Parkinson's disease (PD), which is characterized by progressive neurodegeneration that impairs motor and cognitive function. We previously demonstrated that LRRK2-mediated phosphorylation of ß-amyloid precursor protein (APP) triggers the production and nuclear translocation of the APP intracellular domain (AICD). Here, we connected LRRK2 to AICD in a feed-forward cycle that enhanced LRRK2-mediated neurotoxicity. In cooperation with the transcription factor FOXO3a, AICD promoted LRRK2 expression, thus increasing the abundance of LRRK2 that promotes AICD activation. APP deficiency in LRRK2G2019S mice suppressed LRRK2 expression, LRRK2-mediated mitochondrial dysfunction, α-synuclein accumulation, and tyrosine hydroxylase (TH) loss in the brain, phenotypes associated with toxicity and loss of dopaminergic neurons in PD. Conversely, AICD overexpression increased LRRK2 expression and LRRK2-mediated neurotoxicity in LRRK2G2019S mice. In LRRK2G2019S mice or cultured dopaminergic neurons from LRRK2G2019S patients, treatment with itanapraced reduced LRRK2 expression and was neuroprotective. Itanapraced showed similar effects in a neurotoxin-induced PD mouse model, suggesting that inhibiting the AICD may also have therapeutic benefits in idiopathic PD. Our findings reveal a therapeutically targetable, feed-forward mechanism through which AICD promotes LRRK2-mediated neurotoxicity in PD.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedad de Parkinson , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Neuronas Dopaminérgicas/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Ratones , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo
12.
Nat Rev Neurol ; 18(3): 145-157, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35022573

RESUMEN

Non-coding CGG repeat expansions cause multiple neurodegenerative disorders, including fragile X-associated tremor/ataxia syndrome, neuronal intranuclear inclusion disease, oculopharyngeal myopathy with leukodystrophy, and oculopharyngodistal myopathy. The underlying genetic causes of several of these diseases have been identified only in the past 2-3 years. These expansion disorders have substantial overlapping clinical, neuroimaging and histopathological features. The shared features suggest common mechanisms that could have implications for the development of therapies for this group of diseases - similar therapeutic strategies or drugs may be effective for various neurodegenerative disorders induced by non-coding CGG expansions. In this Review, we provide an overview of clinical and pathological features of these CGG repeat expansion diseases and consider the likely pathological mechanisms, including RNA toxicity, CGG repeat-associated non-AUG-initiated translation, protein aggregation and mitochondrial impairment. We then discuss future research needed to improve the identification and diagnosis of CGG repeat expansion diseases, to improve modelling of these diseases and to understand their pathogenesis. We also consider possible therapeutic strategies. Finally, we propose that CGG repeat expansion diseases may represent manifestations of a single underlying neuromyodegenerative syndrome in which different organs are affected to different extents depending on the gene location of the repeat expansion.


Asunto(s)
Síndrome del Cromosoma X Frágil , Enfermedades Neurodegenerativas , Ataxia/genética , Ataxia/patología , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Humanos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Temblor/genética , Temblor/patología , Expansión de Repetición de Trinucleótido/genética
13.
Mol Brain ; 13(1): 164, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33261640

RESUMEN

Vacuolar protein sorting 35 (VPS35) is a major component of the retromer complex that mediates the retrograde transport of cargo proteins from endosomes to the trans-Golgi network. Mutations such as D620N in the VPS35 gene have been identified in patients with autosomal dominant Parkinson's disease (PD). However, it remains poorly understood whether and how VPS35 deficiency or mutation contributes to PD pathogenesis; specifically, the studies that have examined VPS35 thus far have differed in results and methodologies. We generated a VPS35 D620N mouse model using a Rosa26-based transgene expression platform to allow expression in a spatial manner, so as to better address these discrepancies. Here, aged (20-months-old) mice were first subjected to behavioral tests. Subsequently, DAB staining analysis of substantia nigra (SN) dopaminergic neurons with the marker for tyrosine hydroxylase (TH) was performed. Next, HPLC was used to determine dopamine levels, along with levels of its two metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the striatum. Western blotting was also performed to study the levels of key proteins associated with PD. Lastly, autoradiography (ARG) evaluation of [3H]FE-PE2I binding to the striatal dopamine transporter DAT was carried out. We found that VPS35 D620N Tg mice displayed a significantly higher dopamine level than NTg counterparts. All results were then compared with that of current VPS35 studies to shed light on the disease pathogenesis. Our model allows future studies to explicitly control spatial expression of the transgene which would generate a more reliable PD phenotype.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas de Transporte Vesicular/genética , Envejecimiento/patología , Animales , Autorradiografía , Conducta Animal , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Femenino , Metaboloma , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Neuronas/metabolismo , Sustancia Negra/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
14.
Ageing Res Rev ; 62: 101107, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32535274

RESUMEN

Mitochondrial impairment is associated with progressive dopamine (DA) neuron degeneration in Parkinson's disease (PD). Recent findings highlight that Sirtuin-3 (SIRT3), a mitochondrial protein, is an oxidized nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase and a key modulator in maintaining integrity and functions of mitochondria. SIRT3 plays vital roles in regulation of mitochondrial functions, including mitochondrial ATP generation and energy metabolism, anti-oxidant defense, and cell death and proliferation. SIRT3 can deacetylate the transcriptional factors and crosstalk with different signaling pathways to cooperatively modulate mitochondrial functions and regulate defensive mitochondrial quality control (QC) systems. Down-regulated NAD+ level and decreased SIRT3 activity are related to aging process and has been pathologically linked to PD pathogenesis. Further, SIRT3 can bind and deacetylate PTEN-induced kinase 1 (PINK1) and PD protein 2 E3 ubiquitin protein ligase (Parkin) to facilitate mitophagy. Leucine Rich Repeat Kinase 2 (LRRK2)-G2019S mutation in PD is linked to SIRT3 impairment. Furthermore, SIRT3 is inversely associated with α-synuclein aggregation and DA neuron degeneration in PD. SIRT3 chemical activators and NAD+ precursors can up-regulate SIRT3 activity to protect against DA neuron degeneration in PD models. Taken together, SIRT3 is a promising PD therapeutic target and studies of SIRT3 functional modulators with neuroprotective capability will be of clinical interest.


Asunto(s)
Enfermedad de Parkinson , Humanos , Mitocondrias , NAD , Enfermedad de Parkinson/tratamiento farmacológico , Sirtuina 3/genética , alfa-Sinucleína
15.
Cells ; 8(8)2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31426448

RESUMEN

: Accumulative evidence indicated that the pathologically accumulated metal ions (iron species and Mn3+) and abnormally up-regulated monoamine oxidase B (MAOB) activity induced oxidation of endogenous dopamine (DA) can lead to mitochondria impairment, lysosome dysfunction, proteasome inhibition, and selective DA neuron vulnerability, which is implicated in the pathogenesis of Parkinson's disease (PD). The DA oxidation can generate deleterious reactive oxygen species (ROS) and highly reactive DA quinones (DAQ) to induce DA-related toxicity, which can be alleviated by DA oxidation suppressors, ROS scavengers, DAQ quenchers, and MAOB inhibitors. On the other hand, the nuclear factor erythroid 2-related factor 2 (Nrf2)-Keap1 and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) anti-oxidative and proliferative signaling pathways play roles in anti-oxidative cell defense and mitochondria biogenesis, which is implicated in DA neuron protections. Therefore, agents with capabilities to suppress DA-related toxicity including inhibition of DA oxidation, scavenge of ROS, detoxification of DAQ, inhibition of MAOB, and modulations of anti-oxidative signaling pathways can be protective to DA neurons. Accumulative evidence shows that tea or coffee consumptions and smoking are related to deceased PD prevalence with unknown mechanisms. In this study, we investigate the protective capabilities of tea polyphenols and other PD relevant agents to inhibit DA-related toxicity and protect against environmental or genetic factors induced DA neuron degeneration in vitro and in vivo. We find that tea polyphenols can significantly suppress DA-related toxicity to protect DA neurons. The tea polyphenols can protect DA neurons via inhibition of DA oxidation, conjugation with DAQ, scavenge of ROS, inhibition of MAOB, and modulations of Nrf2-Keap1 and PGC-1α anti-oxidative signaling pathways. The tea polyphenols with more phenolic hydroxyl groups and ring structures have stronger protective functions. The protective capabilities of tea polyphenols is further strengthened by evidence that phenolic hydroxyl groups can directly conjugate with DAQ. However, GSH and other sulfhydyl groups containing agents have weaker capabilities to abrogate DA oxidation, detoxify ROS and DAQ and inhibit MAOB; whereas nicotine (NICO) and caffeine (CAF) can only modulate Nrf2-Keap1 and PGC-1α pathways to protect DA neurons weakly. The tea polyphenols are identified to protect against overexpression of mutant A30P α-synuclein (α-syn) induced DA neuron degeneration and PD-like symptoms in transgenic Drosophila. Based on achievements from current studies, the excellent and versatile protective capabilities of tea polyphenols are highlighted, which will contribute and benefit to future anti-PD therapy.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Degeneración Nerviosa/tratamiento farmacológico , Enfermedad de Parkinson , Polifenoles/farmacología , Animales , Dopamina/análogos & derivados , Dopamina/toxicidad , Drosophila , Células HEK293 , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Extractos Vegetales ,
16.
Transl Neurodegener ; 8: 6, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30740222

RESUMEN

Parkinson's disease (PD) is the most common neurodegenerative movement disorder, which is characterized by the progressive loss of dopaminergic neurons in the Substantia Nigra pars compacta concomitant with Lewy body formation in affected brain areas. The detailed pathogenic mechanisms underlying the selective loss of dopaminergic neurons in PD are unclear, and no drugs or treatments have been developed to alleviate progressive dopaminergic neuron degeneration in PD. However, the formation of α-synuclein-positive protein aggregates in Lewy body has been identified as a common pathological feature of PD, possibly stemming from the consequence of protein misfolding and dysfunctional proteostasis. Proteostasis is the mechanism for maintaining protein homeostasis via modulation of protein translation, enhancement of chaperone capacity and the prompt clearance of misfolded protein by the ubiquitin proteasome system and autophagy. Deregulated protein translation and impaired capacities of chaperone or protein degradation can disturb proteostasis processes, leading to pathological protein aggregation and neurodegeneration in PD. In recent years, multiple molecular targets in the modulation of protein translation vital to proteostasis and dopaminergic neuron degeneration have been identified. The potential pathophysiological and therapeutic significance of these molecular targets to neurodegeneration in PD is highlighted.

17.
Mutat Res Rev Mutat Res ; 778: 72-78, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30454685

RESUMEN

Mutations of F-box only protein 7 (FBXO7) gene are associated with a severe form of autosomal recessive juvenile Parkinson's disease (PD) (PARK15) with clinical features of Parkinsonian-Pyramidal syndrome (PPS). FBXO7 is an adaptor protein in SCFFBXO7 ubiquitin E3 ligase complex that recognizes and mediates degradative or non-degradative ubiquitination of substrates. The FBXO7 protein can regulate cell cycle, proliferation, mitochondrial and proteasome functions via interactions with multiple target proteins. Five PARK15-linked FBXO7 gene mutations and several PD-associated single nucleotide polymorphisms (SNP) have been identified so far. WT FBXO7 proteins possess dual protective and deleterious functions, whereas PARK15-linked FBXO7 mutants are toxic. FBXO7 is a stress response protein and stress challenges can promote translocation of FBXO7 protein from nucleus into mitochondria and even form deleterious protein aggregate in mitochondria. FBXO7 mutants aggravate protein aggregation in mitochondria and inhibit mitophagy. The pathological mechanisms concerning FBXO7-relevant protein aggregation, mitochondria impairment, reactive oxygen species (ROS) generation and mitophagy modulation in PARK15 pathogenesis are highlighted and discussed in the current review.


Asunto(s)
Blefaroespasmo/genética , Proteínas F-Box/genética , Mitocondrias/genética , Enfermedad de Parkinson Secundaria/genética , Enfermedad de Parkinson/genética , Blefaroespasmo/patología , Globo Pálido/patología , Humanos , Mitocondrias/patología , Mitofagia/genética , Enfermedad de Parkinson/patología , Enfermedad de Parkinson Secundaria/patología , Agregación Patológica de Proteínas/genética , Especies Reactivas de Oxígeno/metabolismo
18.
Cell Death Dis ; 9(8): 794, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30026602

RESUMEN

The PDF and HTML versions of the article have been updated to include the Creative Commons Attribution 4.0 International License information.

19.
Mol Neurodegener ; 12(1): 75, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-29061112

RESUMEN

The homeostasis of iron is vital to human health, and iron dyshomeostasis can lead to various disorders. Iron homeostasis is maintained by iron regulatory proteins (IRP1 and IRP2) and the iron-responsive element (IRE) signaling pathway. IRPs can bind to RNA stem-loops containing an IRE in the untranslated region (UTR) to manipulate translation of target mRNA. However, iron can bind to IRPs, leading to the dissociation of IRPs from the IRE and altered translation of target transcripts. Recently an IRE is found in the 5'-UTR of amyloid precursor protein (APP) and α-synuclein (α-Syn) transcripts. The levels of α-Syn, APP and amyloid ß-peptide (Aß) as well as protein aggregation can be down-regulated by IRPs but are up-regulated in the presence of iron accumulation. Therefore, inhibition of the IRE-modulated expression of APP and α-Syn or chelation of iron in patient's brains has therapeutic significance to human neurodegenerative diseases. Currently, new pre-drug IRE inhibitors with therapeutic effects have been identified and are at different stages of clinical trials for human neurodegenerative diseases. Although some promising drug candidates of chemical IRE inhibitors and iron-chelating agents have been identified and are being validated in clinical trials for neurodegenerative diseases, future studies are expected to further establish the clinical efficacy and safety of IRE inhibitors and iron-chelating agents in patients with neurodegenerative diseases.


Asunto(s)
Precursor de Proteína beta-Amiloide/biosíntesis , Proteínas Reguladoras del Hierro/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Transducción de Señal/fisiología , alfa-Sinucleína/biosíntesis , Regulación de la Expresión Génica/fisiología , Homeostasis/fisiología , Humanos , Hierro/metabolismo
20.
Hum Mol Genet ; 26(22): 4494-4505, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28973420

RESUMEN

Pathogenic leucine-rich repeat kinase 2 (LRRK2) mutations are recognized as the most common cause of familial Parkinson's disease in certain populations. Recently, LRRK2 mutations were shown to be associated with a higher risk of hormone-related cancers. However, how LRRK2 itself contributes to cancer risk remains unknown. DNA damage causes cancer, and DNA damage responses are among the most important pathways in cancer biology. To understand the role of LRRK2 in DNA damage response pathway, we induced DNA damage by applying genotoxic stress to the cells with Adriamycin. We found that DNA damage enhances LRRK2 phosphorylation at Serine 910, Serine 935 and Serine 1292. We further showed that LRRK2 phosphorylation is abolished in the absence of ATM, suggesting that LRRK2 phosphorylation requires ATM. It should also be noted that LRRK2 interacts with ATM. In contrast, overexpression or knockdown of LRRK2 does not affect ATM phosphorylation, indicating that LRRK2 is the downstream target of ATM in response to DNA damage. Moreover, we demonstrated that LRRK2 increases the expression of p53 and p21 by increasing the Mdm2 phosphorylation in response to DNA damage. Loss-of-function in LRRK2 has the opposite effect to that of LRRK2. In addition, FACS analysis revealed that LRRK2 enhances cell cycle progression into S phase in response to DNA damage, a finding that was confirmed by 5-bromo-2'-deoxyuridine immunostaining. Taken together, our findings demonstrate that LRRK2 plays an important role in the ATM-Mdm2-p53 pathway that regulates cell proliferation in response to DNA damage.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN/genética , Daño del ADN/fisiología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de Ciclo Celular/genética , División Celular/genética , Proliferación Celular/fisiología , Proteínas de Unión al ADN/genética , Doxorrubicina/farmacología , Células HEK293 , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células 3T3 NIH , Fosforilación , Proteolisis , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...