Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fungal Biol ; 127(9): 1276-1283, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37821149

RESUMEN

The microecology of endophytic fungi in special habitats, such as the interior of different tissues from a medicinal plant, and its effects on the formation of metabolites with different biological activities are of great importance. However, the factors affecting fungal community formation are unclear. This study is the first to utilize "mini-community" remodeling to understand the above phenomena. First, high-throughput sequencing technology was applied to explore the community composition and diversity of endophytic fungi in the above-ground tissues (Ea) and below-ground tissues (Eb) of Ephedra sinica. Second, fungi were obtained through culture-dependent technology and used for "mini-community" remodeling in vitro. Then, the effects of environmental factors, partner fungi, and plant tissue fluid (internal environment) on endophytic fungal community formation were discussed. Results showed that environmental factors played a decisive role in the selection of endophytic fungi, that is, in Ea and Eb, 93.8% and 25.3% of endophytic fungi were halophilic, respectively, and 10.6% and 60.2% fungi were sensitive to high temperature (33 °C), respectively. Meanwhile, pH had little effect on fungal communities. The internal environment of the plant host further promoted the formation of endophytic fungal communities.


Asunto(s)
Ephedra sinica , Micobioma , Biodiversidad , Endófitos/genética , Ecosistema , Hongos/genética , Plantas/microbiología
2.
FEMS Microbiol Lett ; 369(1)2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35746878

RESUMEN

There are many species of Chinese traditional leguminosae family plants that are well known for their medicinal applications, such as Astragalus membranaceus, Catsia tora, Glycyrrhiza uralensis, Sophora flavescens and Albacia acacia. Their unique bioactive composition and internal phenological environment contribute to the formation of specific and unique endophytic fungal communities, which are important resources for new compounds used in a variety of pharmacological activities. Nonetheless, they have not been systematically studied. In the last decade, nearly 64 genera and thousands of species of endophytic fungi have been discovered from leguminosae plants, as well as 138 secondary metabolites (with 34 new compounds) including flavonoid, alkaloids, phenol, anthraquinone, macrolide, terpenoid, phytohormone and many more. These were shown to have diverse applications and benefits, such as antibacterial, antitumor, antioxidative, immunoregulatory and neuroprotective properties. Here, we provide a summarized overview with the aim of raising awareness of endophytic fungi from medicinal leguminosae plants and providing a comprehensive review of the discoveries of new natural products that may be of medicinal and pharmaceutical importance.


Asunto(s)
Productos Biológicos , Fabaceae , Plantas Medicinales , Productos Biológicos/metabolismo , Endófitos/metabolismo , Hongos , Plantas Medicinales/microbiología
3.
Appl Microbiol Biotechnol ; 105(19): 7095-7113, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34499202

RESUMEN

Increased understanding of the interactions between endophytic fungi and plants has led to the discovery of a new generation of chemical compounds and processes between endophytic fungi and plants. Due to the long-term co-evolution between fungal endophytes and host plants, endophytes have evolved special biotransformation abilities, which can have critical consequences on plant metabolic processes and their composition. Biotransformation or bioconversion can impact the synthesis and decomposition of hormones, sugars, amino acids, vitamins, lipids, proteins, and various secondary metabolites, including flavonoids, polysaccharides, and terpenes. Endophytic fungi produce enzymes and various bioactive secondary metabolites with industrial value and can degrade or sequester inorganic and organic small molecules and macromolecules (e.g., toxins, pollutants, heavy metals). These fungi also have the ability to cause highly selective catalytic conversion of high-value compounds in an environmentally friendly manner, which can be important for the production/innovation of bioactive molecules, food and nutrition, agriculture, and environment. This work mainly summarized recent research progress in this field, providing a reference for further research and application of fungal endophytes. KEY POINTS: •The industrial value of degradation of endophytes was summarized. • The commercial value for the pharmaceutical industry is reviewed.


Asunto(s)
Hongos , Biotransformación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...