Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
bioRxiv ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38463962

RESUMEN

Age-related white matter (WM) microstructure maturation and decline occur throughout the human lifespan, complementing the process of gray matter development and degeneration. Here, we create normative lifespan reference curves for global and regional WM microstructure by harmonizing diffusion MRI (dMRI)-derived data from ten public datasets (N = 40,898 subjects; age: 3-95 years; 47.6% male). We tested three harmonization methods on regional diffusion tensor imaging (DTI) based fractional anisotropy (FA), a metric of WM microstructure, extracted using the ENIGMA-DTI pipeline. ComBat-GAM harmonization provided multi-study trajectories most consistent with known WM maturation peaks. Lifespan FA reference curves were validated with test-retest data and used to assess the effect of the ApoE4 risk factor for dementia in WM across the lifespan. We found significant associations between ApoE4 and FA in WM regions associated with neurodegenerative disease even in healthy individuals across the lifespan, with regional age-by-genotype interactions. Our lifespan reference curves and tools to harmonize new dMRI data to the curves are publicly available as eHarmonize (https://github.com/ahzhu/eharmonize).

2.
Biol Psychiatry ; 95(5): 473-481, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37543299

RESUMEN

BACKGROUND: Chronic pain affects nearly 20% of the U.S. POPULATION: It is a leading cause of disability globally and is associated with a heightened risk for suicide. The role of the central nervous system in the perception and maintenance of chronic pain has recently been accepted, but specific brain circuitries involved have yet to be mapped across pain types in a large-scale study. METHODS: We used data from the UK Biobank (N = 21,968) to investigate brain structural alterations in individuals reporting chronic pain compared with pain-free control participants and their mediating effect on history of suicide attempt. RESULTS: Chronic pain and, more notably, chronic multisite pain was associated with, on average, lower surface area throughout the cortex after adjusting for demographic, clinical, and neuropsychiatric confounds. Only participants with abdominal pain showed lower subcortical volumes, including the amygdala and brainstem, and lower cerebellum volumes. Participants with chronic headaches showed a widespread thicker cortex compared with control participants. Mediation analyses revealed that precuneus thickness mediated the relationship of chronic multisite pain and history of suicide attempt. Mediating effects were also identified specific to localized pain, with the strongest effect being amygdala volume in individuals with chronic abdominal pain. CONCLUSIONS: Results support a widespread effect of chronic pain on brain structure and distinct brain structures underlying chronic musculoskeletal pain, visceral pain, and headaches. Mediation effects of regions in the extended ventromedial prefrontal cortex subsystem suggest that exacerbated negative internal states, negative self-referencing, and impairments in future planning may underlie suicidal behaviors in individuals with chronic pain.


Asunto(s)
Dolor Crónico , Intento de Suicidio , Humanos , Intento de Suicidio/psicología , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Dolor Abdominal
3.
Artículo en Inglés | MEDLINE | ID: mdl-38083493

RESUMEN

Structural alterations of the midsagittal corpus callosum (midCC) have been associated with a wide range of brain disorders. The midCC is visible on most MRI contrasts and in many acquisitions with a limited field-of-view. Here, we present an automated tool for segmenting and assessing the shape of the midCC from T1w, T2w, and FLAIR images. We train a UNet on images from multiple public datasets to obtain midCC segmentations. A quality control algorithm is also built-in, trained on the midCC shape features. We calculate intraclass correlations (ICC) and average Dice scores in a test-retest dataset to assess segmentation reliability. We test our segmentation on poor quality and partial brain scans. We highlight the biological significance of our extracted features using data from over 40,000 individuals from the UK Biobank; we classify clinically defined shape abnormalities and perform genetic analyses.


Asunto(s)
Encefalopatías , Cuerpo Calloso , Humanos , Cuerpo Calloso/diagnóstico por imagen , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos
4.
Hum Brain Mapp ; 44(14): 4875-4892, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37471702

RESUMEN

Recent work within neuroimaging consortia have aimed to identify reproducible, and often subtle, brain signatures of psychiatric or neurological conditions. To allow for high-powered brain imaging analyses, it is often necessary to pool MR images that were acquired with different protocols across multiple scanners. Current retrospective harmonization techniques have shown promise in removing site-related image variation. However, most statistical approaches may over-correct for technical, scanning-related, variation as they cannot distinguish between confounded image-acquisition based variability and site-related population variability. Such statistical methods often require that datasets contain subjects or patient groups with similar clinical or demographic information to isolate the acquisition-based variability. To overcome this limitation, we consider site-related magnetic resonance (MR) imaging harmonization as a style transfer problem rather than a domain transfer problem. Using a fully unsupervised deep-learning framework based on a generative adversarial network (GAN), we show that MR images can be harmonized by inserting the style information encoded from a single reference image, without knowing their site/scanner labels a priori. We trained our model using data from five large-scale multisite datasets with varied demographics. Results demonstrated that our style-encoding model can harmonize MR images, and match intensity profiles, without relying on traveling subjects. This model also avoids the need to control for clinical, diagnostic, or demographic information. We highlight the effectiveness of our method for clinical research by comparing extracted cortical and subcortical features, brain-age estimates, and case-control effect sizes before and after the harmonization. We showed that our harmonization removed the site-related variances, while preserving the anatomical information and clinical meaningful patterns. We further demonstrated that with a diverse training set, our method successfully harmonized MR images collected from unseen scanners and protocols, suggesting a promising tool for ongoing collaborative studies. Source code is released in USC-IGC/style_transfer_harmonization (github.com).


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen , Encéfalo/diagnóstico por imagen
5.
Proc Natl Acad Sci U S A ; 120(20): e2217635120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155847

RESUMEN

Myelin repair is an unrealized therapeutic goal in the treatment of multiple sclerosis (MS). Uncertainty remains about the optimal techniques for assessing therapeutic efficacy and imaging biomarkers are required to measure and corroborate myelin restoration. We analyzed myelin water fraction imaging from ReBUILD, a double-blind, randomized placebo-controlled (delayed treatment) remyelination trial, that showed a significant reduction in VEP latency in patients with MS. We focused on brain regions rich in myelin. Fifty MS subjects in two arms underwent 3T MRI at baseline and months 3 and 5. Half of the cohort was randomly assigned to receive treatment from baseline through 3 mo, whereas the other half received treatment from 3 mo to 5 mo post-baseline. We computed myelin water fraction changes occurring in normal-appearing white matter of corpus callosum, optic radiations, and corticospinal tracts. An increase in myelin water fraction was documented in the normal-appearing white matter of the corpus callosum, in correspondence with the administration of the remyelinating treatment clemastine. This study provides direct, biologically validated imaging-based evidence of medically induced myelin repair. Moreover, our work strongly suggests that significant myelin repair occurs outside of lesions. We therefore propose myelin water fraction within the normal-appearing white matter of the corpus callosum as a biomarker for clinical trials looking at remyelination.


Asunto(s)
Esclerosis Múltiple , Remielinización , Sustancia Blanca , Humanos , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Encéfalo/patología , Vaina de Mielina/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Imagen por Resonancia Magnética/métodos , Agua , Biomarcadores
6.
ArXiv ; 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37205260

RESUMEN

Structural alterations of the midsagittal corpus callosum (midCC) have been associated with a wide range of brain disorders. The midCC is visible on most MRI contrasts and in many acquisitions with a limited field-of-view. Here, we present an automated tool for segmenting and assessing the shape of the midCC from T1w, T2w, and FLAIR images. We train a UNet on images from multiple public datasets to obtain midCC segmentations. A quality control algorithm is also built-in, trained on the midCC shape features. We calculate intraclass correlations (ICC) and average Dice scores in a test-retest dataset to assess segmentation reliability. We test our segmentation on poor quality and partial brain scans. We highlight the biological significance of our extracted features using data from over 40,000 individuals from the UK Biobank; we classify clinically defined shape abnormalities and perform genetic analyses.

7.
Hum Brain Mapp ; 44(4): 1515-1532, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36437735

RESUMEN

Automatic neuroimaging processing tools provide convenient and systematic methods for extracting features from brain magnetic resonance imaging scans. One tool, FreeSurfer, provides an easy-to-use pipeline to extract cortical and subcortical morphometric measures. There have been over 25 stable releases of FreeSurfer, with different versions used across published works. The reliability and compatibility of regional morphometric metrics derived from the most recent version releases have yet to be empirically assessed. Here, we used test-retest data from three public data sets to determine within-version reliability and between-version compatibility across 42 regional outputs from FreeSurfer versions 7.1, 6.0, and 5.3. Cortical thickness from v7.1 was less compatible with that of older versions, particularly along the cingulate gyrus, where the lowest version compatibility was observed (intraclass correlation coefficient 0.37-0.61). Surface area of the temporal pole, frontal pole, and medial orbitofrontal cortex, also showed low to moderate version compatibility. We confirm low compatibility between v6.0 and v5.3 of pallidum and putamen volumes, while those from v7.1 were compatible with v6.0. Replication in an independent sample showed largely similar results for measures of surface area and subcortical volumes, but had lower overall regional thickness reliability and compatibility. Batch effect correction may adjust for some inter-version effects when most sites are run with one version, but results vary when more sites are run with different versions. Age associations in a quality controlled independent sample (N = 106) revealed version differences in results of downstream statistical analysis. We provide a reference to highlight the regional metrics that may yield recent version-related inconsistencies in published findings. An interactive viewer is provided at http://data.brainescience.org/Freesurfer_Reliability/.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Programas Informáticos , Humanos , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos
8.
Mol Psychiatry ; 28(2): 698-709, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36380235

RESUMEN

The neurobiological bases of the association between development and psychopathology remain poorly understood. Here, we identify a shared spatial pattern of cortical thickness (CT) in normative development and several psychiatric and neurological disorders. Principal component analysis (PCA) was applied to CT of 68 regions in the Desikan-Killiany atlas derived from three large-scale datasets comprising a total of 41,075 neurotypical participants. PCA produced a spatially broad first principal component (PC1) that was reproducible across datasets. Then PC1 derived from healthy adult participants was compared to the pattern of CT differences associated with psychiatric and neurological disorders comprising a total of 14,886 cases and 20,962 controls from seven ENIGMA disease-related working groups, normative maturation and aging comprising a total of 17,697 scans from the ABCD Study® and the IMAGEN developmental study, and 17,075 participants from the ENIGMA Lifespan working group, as well as gene expression maps from the Allen Human Brain Atlas. Results revealed substantial spatial correspondences between PC1 and widespread lower CT observed in numerous psychiatric disorders. Moreover, the PC1 pattern was also correlated with the spatial pattern of normative maturation and aging. The transcriptional analysis identified a set of genes including KCNA2, KCNS1 and KCNS2 with expression patterns closely related to the spatial pattern of PC1. The gene category enrichment analysis indicated that the transcriptional correlations of PC1 were enriched to multiple gene ontology categories and were specifically over-represented starting at late childhood, coinciding with the onset of significant cortical maturation and emergence of psychopathology during the prepubertal-to-pubertal transition. Collectively, the present study reports a reproducible latent pattern of CT that captures interregional profiles of cortical changes in both normative brain maturation and a spectrum of psychiatric disorders. The pubertal timing of the expression of PC1-related genes implicates disrupted neurodevelopment in the pathogenesis of the spectrum of psychiatric diseases emerging during adolescence.


Asunto(s)
Trastornos Mentales , Canales de Potasio con Entrada de Voltaje , Adulto , Adolescente , Humanos , Niño , Encéfalo , Trastornos Mentales/genética , Trastornos Mentales/patología , Envejecimiento/genética , Imagen por Resonancia Magnética , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología
9.
Nat Commun ; 13(1): 6071, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36241887

RESUMEN

Genetic associations with macroscopic brain structure can provide insights into brain function and disease. However, specific associations with measures of local brain folding are largely under-explored. Here, we conducted large-scale genome- and exome-wide associations of regional cortical sulcal measures derived from magnetic resonance imaging scans of 40,169 individuals in UK Biobank. We discovered 388 regional brain folding associations across 77 genetic loci, with genes in associated loci enriched for expression in the cerebral cortex, neuronal development processes, and differential regulation during early brain development. We integrated brain eQTLs to refine genes for various loci, implicated several genes involved in neurodevelopmental disorders, and highlighted global genetic correlations with neuropsychiatric phenotypes. We provide an interactive 3D visualisation of our summary associations, emphasising added resolution of regional analyses. Our results offer new insights into the genetic architecture of brain folding and provide a resource for future studies of sulcal morphology in health and disease.


Asunto(s)
Bancos de Muestras Biológicas , Encéfalo , Encéfalo/diagnóstico por imagen , Corteza Cerebral/anatomía & histología , Estudio de Asociación del Genoma Completo , Humanos , Imagen por Resonancia Magnética , Reino Unido
10.
Mol Psychiatry ; 27(11): 4550-4560, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36071108

RESUMEN

Identifying brain alterations associated with suicidal thoughts and behaviors (STBs) in young people is critical to understanding their development and improving early intervention and prevention. The ENIGMA Suicidal Thoughts and Behaviours (ENIGMA-STB) consortium analyzed neuroimaging data harmonized across sites to examine brain morphology associated with STBs in youth. We performed analyses in three separate stages, in samples ranging from most to least homogeneous in terms of suicide assessment instrument and mental disorder. First, in a sample of 577 young people with mood disorders, in which STBs were assessed with the Columbia Suicide Severity Rating Scale (C-SSRS). Second, in a sample of young people with mood disorders, in which STB were assessed using different instruments, MRI metrics were compared among healthy controls without STBs (HC; N = 519), clinical controls with a mood disorder but without STBs (CC; N = 246) and young people with current suicidal ideation (N = 223). In separate analyses, MRI metrics were compared among HCs (N = 253), CCs (N = 217), and suicide attempters (N = 64). Third, in a larger transdiagnostic sample with various assessment instruments (HC = 606; CC = 419; Ideation = 289; HC = 253; CC = 432; Attempt=91). In the homogeneous C-SSRS sample, surface area of the frontal pole was lower in young people with mood disorders and a history of actual suicide attempts (N = 163) than those without a lifetime suicide attempt (N = 323; FDR-p = 0.035, Cohen's d = 0.34). No associations with suicidal ideation were found. When examining more heterogeneous samples, we did not observe significant associations. Lower frontal pole surface area may represent a vulnerability for a (non-interrupted and non-aborted) suicide attempt; however, more research is needed to understand the nature of its relationship to suicide risk.


Asunto(s)
Ideación Suicida , Intento de Suicidio , Adolescente , Humanos , Encéfalo , Neuroimagen/métodos , Trastornos del Humor
11.
Neuroimage ; 262: 119555, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35963506

RESUMEN

Regional homogeneity (ReHo) is a measure of local functional brain connectivity that has been reported to be altered in a wide range of neuropsychiatric disorders. Computed from brain resting-state functional MRI time series, ReHo is also sensitive to fluctuations in cerebral blood flow (CBF) that in turn may be influenced by cerebrovascular health. We accessed cerebrovascular health with Framingham cardiovascular risk score (FCVRS). We hypothesize that ReHo signal may be influenced by regional CBF; and that these associations can be summarized as FCVRS→CBF→ReHo. We used three independent samples to test this hypothesis. A test-retest sample of N = 30 healthy volunteers was used for test-retest evaluation of CBF effects on ReHo. Amish Connectome Project (ACP) sample (N = 204, healthy individuals) was used to evaluate association between FCVRS and ReHo and testing if the association diminishes given CBF. The UKBB sample (N = 6,285, healthy participants) was used to replicate the effects of FCVRS on ReHo. We observed strong CBF→ReHo links (p<2.5 × 10-3) using a three-point longitudinal sample. In ACP sample, marginal and partial correlations analyses demonstrated that both CBF and FCVRS were significantly correlated with the whole-brain average (p<10-6) and regional ReHo values, with the strongest correlations observed in frontal, parietal, and temporal areas. Yet, the association between ReHo and FCVRS became insignificant once the effect of CBF was accounted for. In contrast, CBF→ReHo remained significantly linked after adjusting for FCVRS and demographic covariates (p<10-6). Analysis in N = 6,285 replicated the FCVRS→ReHo effect (p = 2.7 × 10-27). In summary, ReHo alterations in health and neuropsychiatric illnesses may be partially driven by region-specific variability in CBF, which is, in turn, influenced by cardiovascular factors.


Asunto(s)
Enfermedades Cardiovasculares , Conectoma , Encéfalo/fisiología , Enfermedades Cardiovasculares/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Imagen por Resonancia Magnética , Factores de Riesgo
13.
Hum Brain Mapp ; 43(1): 234-243, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33067842

RESUMEN

As stroke mortality rates decrease, there has been a surge of effort to study poststroke dementia (PSD) to improve long-term quality of life for stroke survivors. Hippocampal volume may be an important neuroimaging biomarker in poststroke dementia, as it has been associated with many other forms of dementia. However, studying hippocampal volume using MRI requires hippocampal segmentation. Advances in automated segmentation methods have allowed for studying the hippocampus on a large scale, which is important for robust results in the heterogeneous stroke population. However, most of these automated methods use a single atlas-based approach and may fail in the presence of severe structural abnormalities common in stroke. Hippodeep, a new convolutional neural network-based hippocampal segmentation method, does not rely solely on a single atlas-based approach and thus may be better suited for stroke populations. Here, we compared quality control and the accuracy of segmentations generated by Hippodeep and two well-accepted hippocampal segmentation methods on stroke MRIs (FreeSurfer 6.0 whole hippocampus and FreeSurfer 6.0 sum of hippocampal subfields). Quality control was performed using a stringent protocol for visual inspection of the segmentations, and accuracy was measured as volumetric correlation with manual segmentations. Hippodeep performed significantly better than both FreeSurfer methods in terms of quality control. All three automated segmentation methods had good correlation with manual segmentations and no one method was significantly more correlated than the others. Overall, this study suggests that both Hippodeep and FreeSurfer may be useful for hippocampal segmentation in stroke rehabilitation research, but Hippodeep may be more robust to stroke lesion anatomy.


Asunto(s)
Hipocampo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Neuroimagen/métodos , Accidente Cerebrovascular/diagnóstico por imagen , Conjuntos de Datos como Asunto , Hipocampo/patología , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/normas , Neuroimagen/normas , Control de Calidad , Accidente Cerebrovascular/patología
14.
Ann Neurol ; 91(2): 268-281, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34878197

RESUMEN

OBJECTIVE: A major challenge in multiple sclerosis (MS) research is the understanding of silent progression and Progressive MS. Using a novel method to accurately capture upper cervical cord area from legacy brain MRI scans we aimed to study the role of spinal cord and brain atrophy for silent progression and conversion to secondary progressive disease (SPMS). METHODS: From a single-center observational study, all RRMS (n = 360) and SPMS (n = 47) patients and 80 matched controls were evaluated. RRMS patient subsets who converted to SPMS (n = 54) or silently progressed (n = 159), respectively, during the 12-year observation period were compared to clinically matched RRMS patients remaining RRMS (n = 54) or stable (n = 147), respectively. From brain MRI, we assessed the value of brain and spinal cord measures to predict silent progression and SPMS conversion. RESULTS: Patients who developed SPMS showed faster cord atrophy rates (-2.19%/yr) at least 4 years before conversion compared to their RRMS matches (-0.88%/yr, p < 0.001). Spinal cord atrophy rates decelerated after conversion (-1.63%/yr, p = 0.010) towards those of SPMS patients from study entry (-1.04%). Each 1% faster spinal cord atrophy rate was associated with 69% (p < 0.0001) and 53% (p < 0.0001) shorter time to silent progression and SPMS conversion, respectively. INTERPRETATION: Silent progression and conversion to secondary progressive disease are predominantly related to cervical cord atrophy. This atrophy is often present from the earliest disease stages and predicts the speed of silent progression and conversion to Progressive MS. Diagnosis of SPMS is rather a late recognition of this neurodegenerative process than a distinct disease phase. ANN NEUROL 2022;91:268-281.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patología , Médula Espinal/patología , Adulto , Atrofia , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Progresión de la Enfermedad , Femenino , Foramen Magno/diagnóstico por imagen , Foramen Magno/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Estudios Prospectivos , Médula Espinal/diagnóstico por imagen
15.
Pac Symp Biocomput ; 27: 121-132, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34890142

RESUMEN

Disrupted iron homeostasis is associated with several neurodegenerative diseases, including Alzheimer's disease (AD), and may be partially modulated by genetic risk factors. Here we evaluated whether subcortical iron deposition is associated with ApoE genotype, which substantially affects risk for late-onset AD. We evaluated differences in subcortical quantitative susceptibility mapping (QSM), a type of MRI sensitive to cerebral iron deposition, between either ApoE4 (E3E4+E4E4) or ApoE2 (E2E3+E2E2) carriers and E3 homozygotes (E3E3) in 27,535 participants from the UK Biobank (age: 45-82 years). We found that ApoE4 carriers had higher hippocampal (d=0.036; p=0.012) and amygdalar (d=0.035; p=0.013) magnetic susceptibility, particularly individuals aged 65 years or older, while those carrying ApoE2 (which protects against AD) had higher QSM only in the hippocampus (d=0.05; p=0.006), particularly those under age 65. Secondary diffusion MRI microstructural associations in these regions revealed greater diffusivity and less diffusion restriction in E4 carriers, however no differences were detected in E2 carriers. Disease risk conferred by ApoE4 may be linked with higher subcortical iron burden in conjunction with inflammation or neuronal loss in aging individuals, while ApoE2 associations may not necessarily reflect unhealthy iron deposits earlier in life.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Apolipoproteína E2/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Bancos de Muestras Biológicas , Biología Computacional , Genotipo , Humanos , Persona de Mediana Edad , Reino Unido
16.
Pain Manag ; 12(4): 557-567, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34886683

RESUMEN

This paper performs a review of current literature as well as uses our single-center experience to discuss pre-operative, intra-operative and, briefly, postoperative management for dorsal column stimulators (DCSs), dorsal root ganglion (DRG) stimulators, peripheral nerve stimulators (PNSs) and intrathecal pumps. Generally, pre-operative antibiotics are recommended with discontinuation within 24 h postoperatively. For dorsal column and DRG stimulation, monitored anesthesia care or general anesthesia with intra-operative neuromonitoring is recommended; for peripheral nerve stimulation and intrathecal pump implementation, monitored anesthesia care is preferred. There is little information on appropriate anesthetic management during these forms of neuromodulation. More research is necessary to articulate specific pre-operative, intra-operative and postoperative management guidelines and recommendations for dorsal column stimulator, DRG stimulation, PNS and intrathecal pump implantation.


Neuromodulation is a procedure wherein the nerves that are responsible for pain are stimulated, for example with electrical pulses, to reduce the pain signals originating from that nerve. The implantation of neuromodulation devices requires surgery. This paper reviews current literature and provides guidelines based on our single center experience to discuss anesthetic management of patients before surgery, during surgery and after the surgery. We review management for different forms of neuromodulation including dorsal column stimulators (DCSs), dorsal root ganglion (DRG) stimulators, peripheral nerve stimulators and intrathecal pumps. We searched various online databases to find papers that discussed anesthetic management around these surgeries. Generally, starting antibiotics before the surgery and then stopping the antibiotics within 24 h after the surgery is recommended. For dorsal column and DRG stimulation, monitored anesthesia care, where patients are awake but very relaxed, or general anesthesia with neuromonitoring during the operation (so that surgeons can check the function of the nerves in real time) is recommended. For peripheral nerve stimulation and intrathecal pump implementation, monitored anesthesia care is preferred. There is little information in the literature on appropriate anesthetic management during these forms of neuromodulation. More research is necessary to articulate specific management guidelines before surgery, during surgery and after surgery for DCSs, DRG stimulation, peripheral nerve stimulator and intrathecal pump implantation.


Asunto(s)
Anestesia , Anestésicos , Terapia por Estimulación Eléctrica , Estimulación Eléctrica Transcutánea del Nervio , Ganglios Espinales , Humanos
17.
Brain Imaging Behav ; 15(6): 2813-2823, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34537917

RESUMEN

A comprehensive characterization of the brain's white matter is critical for improving our understanding of healthy and diseased aging. Here we used diffusion-weighted magnetic resonance imaging (dMRI) to estimate age and sex effects on white matter microstructure in a cross-sectional sample of 15,628 adults aged 45-80 years old (47.6% male, 52.4% female). Microstructure was assessed using the following four models: a conventional single-shell model, diffusion tensor imaging (DTI); a more advanced single-shell model, the tensor distribution function (TDF); an advanced multi-shell model, neurite orientation dispersion and density imaging (NODDI); and another advanced multi-shell model, mean apparent propagator MRI (MAPMRI). Age was modeled using a data-driven statistical approach, and normative centile curves were created to provide sex-stratified white matter reference charts. Participant age and sex substantially impacted many aspects of white matter microstructure across the brain, with the advanced dMRI models TDF and NODDI detecting such effects the most sensitively. These findings and the normative reference curves provide an important foundation for the study of healthy and diseased brain aging.


Asunto(s)
Sustancia Blanca , Anciano , Anciano de 80 o más Años , Bancos de Muestras Biológicas , Encéfalo/diagnóstico por imagen , Estudios Transversales , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Reino Unido , Sustancia Blanca/diagnóstico por imagen
18.
Pain Physician ; 24(2): E131-E152, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33740342

RESUMEN

BACKGROUND: Peripheral nerve stimulation (PNS) has been increasingly used to manage acute and chronic pain. However, the level of clinical evidence to support its use is not clear. OBJECTIVES: To assess the clinical evidence of PNS in the treatment of acute or chronic pain. STUDY DESIGN: A systematic review of the efficacy and safety of PNS in managing acute or chronic pain. METHODS: Data sources were PubMed, Cochrane Library, Scopus, CINAHL Plus, Google Scholar, and reference lists. The literature search was performed up to December 2019. Study selection included randomized trials, observational studies, and case reports of PNS in acute or chronic pain. Data extraction and methodological quality assessment were performed utilizing Cochrane review methodologic quality assessment and Interventional Pain Management Techniques-Quality Appraisal of Reliability and Risk of Bias Assessment (IPM-QRB) and Interventional Pain Management Techniques-Quality Appraisal of Reliability and Risk of Bias Assessment for Nonrandomized Studies (IPM-QRBNR). The evidence was summarized utilizing principles of best evidence synthesis on a scale of 1 to 5. Data syntheses: 227 studies met inclusion criteria and were included in qualitative synthesis. RESULTS: Evidence synthesis based on randomized controlled trials (RCTs) and observational studies showed Level I and II evidence of PNS in chronic migraine headache; Level II evidence in cluster headache, postamputation pain, chronic pelvic pain, chronic low back and lower extremity pain; and Level IV evidence in peripheral neuropathic pain, and postsurgical pain. Peripheral field stimulation has Level II evidence in chronic low back pain, and Level IV evidence in cranial pain. LIMITATIONS: Lack of high-quality RCTs. Meta-analysis was not possible due to wide variations in experimental design, research protocol, and heterogeneity of study population. CONCLUSIONS: The findings of this systematic review suggest that PNS may be effective in managing chronic headaches, postamputation pain, chronic pelvic pain, and chronic low back and lower extremity pain, with variable levels of evidence in favor of this technique.


Asunto(s)
Dolor Agudo/terapia , Dolor Crónico/terapia , Manejo del Dolor/métodos , Nervios Periféricos/fisiopatología , Estimulación Eléctrica Transcutánea del Nervio , Dolor Agudo/fisiopatología , Dolor Crónico/fisiopatología , Humanos , Reproducibilidad de los Resultados
19.
Neuroimage Clin ; 29: 102574, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33530016

RESUMEN

Neurological and psychiatric illnesses are associated with regional brain deficit patterns that bear unique signatures and capture illness-specific characteristics. The Regional Vulnerability Index (RVI) was developed toquantify brain similarity by comparing individual white matter microstructure, cortical gray matter thickness and subcortical gray matter structural volume measures with neuroanatomical deficit patterns derived from large-scale meta-analytic studies. We tested the specificity of the RVI approach for major depressive disorder (MDD) and Alzheimer's disease (AD) in a large epidemiological sample of UK Biobank (UKBB) participants (N = 19,393; 9138 M/10,255F; age = 64.8 ± 7.4 years). Compared to controls free of neuropsychiatric disorders, participants with MDD (N = 2,248; 805 M/1443F; age = 63.4 ± 7.4) had significantly higher RVI-MDD values (t = 5.6, p = 1·10-8), but showed no detectable difference in RVI-AD (t = 2.0, p = 0.10). Subjects with dementia (N = 7; 4 M/3F; age = 68.6 ± 8.6 years) showed significant elevation in RVI-AD (t = 4.2, p = 3·10-5) but not RVI-MDD (t = 2.1, p = 0.10) compared to controls. Even within affective illnesses, participants with bipolar disorder (N = 54) and anxiety disorder (N = 773) showed no significant elevation in whole-brain RVI-MDD. Participants with Parkinson's disease (N = 37) showed elevation in RVI-AD (t = 2.4, p = 0.01) while subjects with stroke (N = 247) showed no such elevation (t = 1.1, p = 0.3). In summary, we demonstrated elevation in RVI-MDD and RVI-AD measures in the respective illnesses with strong replicability that is relatively specific to the respective diagnoses. These neuroanatomic deviation patterns offer a useful biomarker for population-wide assessments of similarity to neuropsychiatric illnesses.


Asunto(s)
Enfermedad de Alzheimer , Trastorno Depresivo Mayor , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Macrodatos , Encéfalo/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
20.
Proc IEEE Int Symp Biomed Imaging ; 2021: 1288-1291, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35321153

RESUMEN

Quality control (QC) is a vital step for all scientific data analyses and is critically important in the biomedical sciences. Image segmentation is a common task in medical image analysis, and automated tools to segment many regions from human brain MRIs are now well established. However, these methods do not always give anatomically correct labels. Traditional methods for QC tend to reject statistical outliers, which may not necessarily be inaccurate. Here, we make use of a large database of over 12,000 brain images that contain 68 parcellations of the human cortex, each of which was assessed for anatomical accuracy by a human rater. We trained three machine learning models to determine if a region was anatomically accurate (as 'pass', or 'fail') and tested the performance on an independent dataset. We found good performance for the majority of labeled regions. This work will facilitate more anatomically accurate large-scale multi-site research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...