Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683028

RESUMEN

The prosperity of chemodynamic therapy provides a new strategy for tumor treatment. However, the lack of reactive oxygen species and the specific reductive tumor microenvironment have limited the further development of chemodynamic therapy. Herein, we reported a Fe-based cyclically catalyzing double free radical system for tumor therapy by catalyzing exogenous potassium persulfate (K2S2O8) and endogenous hydrogen peroxide (H2O2). Sufficient amounts of Fe3+ and S2O82- were delivered to tumor sites via tumor-targeted hyaluronic acid (HA) encapsulated mesoporous silica nanoparticles (MSNs) and released under the dual stimulation of acid and hyaluronidase (HAase) in the tumor microenvironment. Fe3+ was reduced to Fe2+ by the reducing agents of loaded tannic acid (TA) and intracellular glutathione (GSH), and Fe2+ was subsequently reacted with S2O82- and endogenous H2O2 to produce two types of ROS (˙OH and SO4-˙), showing an excellent anti-tumor effect. This process not only supplied Fe2+ for the catalysis of active substances, but also reduced the concentration of reduced substances in cells, which was conducive to the existence of free radicals for the efficient killing of tumor cells. Therefore, this iron-based catalysis of exogenous and exogenous active substances to realize a dual-radical oncotherapy nanosystem would provide a new perspective for chemodynamic therapy.

2.
Front Pediatr ; 11: 1306076, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38078319

RESUMEN

Background: Treating subtrochanteric femur fractures in pediatric patients remains challenging, and an optimal fixation device has yet to be established. This study aimed to asess the clinical and radiological outcomes of Ortho-Bridge System (OBS) treatment for length-unstable subtrochanteric femur fractures in children aged 5-16 years. Methods: We conducted a retrospective review of pediatric patients with subtrochanteric femur fractures treated with OBS between January 2018 and December 2021. The study included 19 children (12 boys, 7 girls) with an average age of 10.4 ± 2.6 years. Two of the patients had pathological fractures associated with aneurysmal bone cyst. Demographic information, mechanism of accident, fracture type, associated neurovascular injuries, surgical duration and blood loss, were collected from the hospital database. Time to union and postoperative complications were recorded. Clinical and radiological outcomes were assessed using the Harris scoring system at the latest follow-up. Results: Injuries resulted from vehicle accidents in 10 patients (52.6%), falls over 3 meters in height in 3 patients (15.8%), and sports-related injuries in 6 patients (31.6%). The average patient weight was 41.5 kg (range: 21-78). Of the fractures, 14 (73.7%) were complex, and 5 (26.3%) were spiral. The average surgical duration was 111 min (range: 90-180), and the average surgical blood loss was 134 ml (range: 70-300). The mean time to union was 12.7 weeks (range: 8-16). No cases of infection, malunion, implant failure, or femoral head osteonecrosis were reported. Leg length discrepancy of 10 mm was observed in one patient. All patients achieved excellent results according to the Harris scoring system. Conclusion: This study suggests that the OBS may serve as an effective alternative fixation option for managing length-unstable subtrochanteric femur fractures in school-aged children.

3.
Plant Physiol Biochem ; 196: 1122-1136, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36907700

RESUMEN

Pinus massoniana is an important industrial crop tree species commonly used for timber and wood pulp for papermaking, rosin, and turpentine. This study investigated the effects of exogenous calcium (Ca) on P. massoniana seedling growth, development, and various biological processes and revealed the underlying molecular mechanisms. The results showed that Ca deficiency led to severe inhibition of seedling growth and development, whereas adequate exogenous Ca markedly improved growth and development. Many physiological processes were regulated by exogenous Ca. The underlying mechanisms involved diverse Ca-influenced biological processes and metabolic pathways. Calcium deficiency inhibited or impaired these pathways and processes, whereas sufficient exogenous Ca improved and benefited these cellular events by regulating several related enzymes and proteins. High levels of exogenous Ca facilitated photosynthesis and material metabolism. Adequate exogenous Ca supply relieved oxidative stress that occurred at low Ca levels. Enhanced cell wall formation, consolidation, and cell division also played a role in exogenous Ca-improved P. massoniana seedling growth and development. Calcium ion homeostasis and Ca signal transduction-related gene expression were also activated at high exogenous Ca levels. Our study facilitates the elucidation of the potential regulatory role of Ca in P. massoniana physiology and biology and is of guiding significance in Pinaceae plant forestry.


Asunto(s)
Fenómenos Biológicos , Pinus , Calcio/metabolismo , Pinus/genética , Pinus/metabolismo , Proteómica/métodos , Plantones/metabolismo , Crecimiento y Desarrollo
4.
Life (Basel) ; 13(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36836855

RESUMEN

The hormonal imbalances, including abscisic acid (ABA) and brassinosteroid (BR) levels, caused by salinity constitute a key factor in hindering spikelet development in rice and in reducing rice yield. However, the effects of ABA and BRs on spikelet development in plants subjected to salinity stress have been explored to only a limited extent. In this research, the effect of ABA and BRs on rice growth characteristics and the development of spikelets under different salinity levels were investigated. The rice seedlings were subjected to three different salt stress levels: 0.0875 dS m-1 (Control, CK), low salt stress (1.878 dS m-1, LS), and heavy salt stress (4.09 dS m-1, HS). Additionally, independent (ABA or BR) and combined (ABA+BR) exogenous treatments of ABA (at 0 and 25 µM concentration) and BR (at 0 and 5 µM concentration) onto the rice seedlings were performed. The results showed that the exogenous application of ABA, BRs, and ABA+BRs triggered changes in physiological and agronomic characteristics, including photosynthesis rate (Pn), SPAD value, pollen viability, 1000-grain weight (g), and rice grain yield per plant. In addition, spikelet sterility under different salt stress levels (CK, LS, and HS) was decreased significantly through the use of both the single phytohormone and the cocktail, as compared to the controls. The outcome of this study reveals new insights about rice spikelet development in plants subjected to salt stress and the effects on this of ABA and BR. Additionally, it provides information on the use of plant hormones to improve rice yield under salt stress and on the enhancement of effective utilization of salt-affected soils.

5.
Orthop Surg ; 14(12): 3423-3430, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36263967

RESUMEN

BACKGROUND: Internal fixation for severe open articular bone defects is sometimes ineffective or dangerous. In the emergency stage, radical debridement and infection prevention are demanded to provide a good tissue base and the space-occupying effect to provide enough necessary space to avoid soft-tissue contraction for the reconstruction. In addition, the 3D printing technology makes individual limb reconstruction a reality. CASE PRESENTATION: Here, we present a 31-year-old patient with an open fracture and severe bone defect of his left elbow caused by traffic accident, classified as Gustilo-Anderson IIIB. We adopted aggressive debridement and insertion of polymethyl methacrylate (PMMA) to prevent the infection and temporarily construct the bone defect in the emergency stage. Secondly, the total elbow arthroplasty was performed using a unique three-dimensional (3D) printed prosthesis to reconstruct the elbow joint. During the follow-up, the elbow movement function was satisfactory. CONCLUSIONS: The modified Masquelet technique assisting 3D printing of personalized elbow joint makes the satisfactory functional reconstruction for open high-energy injuries come true. It could be promoted for the similar surgery of other open joints fractures with severe bone defects.


Asunto(s)
Fracturas de Codo , Prótesis de Codo , Fracturas Abiertas , Humanos , Adulto
6.
Life (Basel) ; 12(6)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35743864

RESUMEN

Cold stress inhibits rice germination and seedling growth. Brassinolide (BR) plays key roles in plant growth, development, and stress responses. In this study, we explored the underlying mechanisms whereby BR helps alleviate cold stress in rice seedlings. BR application to the growth medium significantly increased seed germination and seedling growth of the early rice cultivar "Zhongzao 39" after three days of cold treatment. Specifically, BR significantly increased soluble protein and soluble sugar contents after three days of cold treatment. Moreover, BR stimulated the activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase; thereby alleviating cold-induced damage and increasing glutathione content and the GSH/GSSG ratio while concomitantly reducing H2O2 content. BR upregulated the expression levels of cold-response-related genes, including OsICE1, OsFer1, OsCOLD1, OsLti6a, OsSODB, OsMyb, and OsTERF2, and downregulated that of OsWRKY45, overall alleviating cold stress symptoms. Thus, BR not only upregulated cellular osmotic content and the antioxidant enzyme system to maintain the physiological balance of reactive oxygen species under cold but, additionally, it regulated the expression of cold-response-related genes to alleviate cold stress symptoms. These results provide a theoretical basis for rice breeding for cold resistance using young seedlings.

7.
Front Plant Sci ; 13: 845107, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386672

RESUMEN

As one of the serious environmental problems worldwide, acid rain (AR) has always caused continuous damage to the forestry ecosystem. Studies have shown that AR can leach calcium ions from plants and soil. Calcium (Ca) is also a crucial regulator of the plant stress response, whereas there are few reports on how Ca regulates the response of AR-resistant woody plants to AR stress. In this study, by setting different exogenous Ca levels, we study the physiological and molecular mechanism of Ca in regulating the Taxus wallichiana var. mairei response to AR stress. Our results showed that low Ca level leads to photosynthesis, and antioxidant defense system decreases in T. wallichiana var. mairei leaves; however, these negative effects could be reversed at high Ca level. In addition, proteomic analyses identified 44 differentially expressed proteins in different Ca level treatments of T. wallichiana var. mairei under AR stress. These proteins were classified into seven groups, which include metabolic process, photosynthesis and energy pathway, cell rescue and defense, transcription and translation, protein modification and degradation, signal transduction, etc. Furthermore, the study found that low Ca level leads to an obvious increase of Ca-related gene expression under AR stress in T. wallichiana var. mairei using qRT-PCR analyses and however can be reversed at high Ca level. These findings would enrich and extend the Ca signaling pathways of AR stress in AR-resistant woody plants and are expected to have important theoretical and practical significance in revealing the mechanism of woody plants tolerating AR stress and protecting forestry ecosystem in soil environment under different Ca levels.

9.
Med Sci Monit ; 27: e934259, 2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34355704

RESUMEN

Retraction requested by the author due to an admission of research fraud. Reference: Chong Zhang, Chunquan Zhu, Guorong Yu, Kai Deng, Li Yu. Management of Infected Bone Defects of the Lower Extremities by Three-Stage Induced Membrane Technique. Med Sci Monit 2020; 26: e919925. 10.12659/MSM.919925.

10.
Nitric Oxide ; 111-112: 14-30, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33839259

RESUMEN

Hydrogen sulfide (H2S) is an important gaseous signal molecule which participates in various abiotic stress responses. However, the underlying mechanism of H2S associated salt tolerance remains elusive. In this study, sodium hydrosulfide (NaHS, donor of H2S) was used to investigate the protective role of H2S against salt stress at the biochemical and proteomic levels. Antioxidant activity and differentially expressed proteins (DEPs) of rice seedlings treated by NaCl or/and exogenous H2S were investigated by the methods of biochemical approaches and comparative proteomic analysis. The protein-protein interaction (PPI) analysis was used for understanding the interaction networks of stress responsive proteins. In addition, relative mRNA levels of eight selected identified DEPs were analyzed by quantitative real-time PCR. The result showed that H2S alleviated oxidative damage caused by salt stress in rice seedling. The activities of some antioxidant enzymes and glutathione metabolism were mediated by H2S under salt stress. Proteomics analyses demonstrated that NaHS regulated antioxidant related proteins abundances and affected related enzyme activities under salt stress. Proteins related to light reaction system (PsbQ domain protein, plastocyanin oxidoreductase iron-sulfur protein), Calvin cycle (phosphoglycerate kinase, sedoheptulose-1,7-bisphosphatase precursor, ribulose-1,5-bisphosphate carboxylase/oxygenase) and chlorophyll biosynthesis (glutamate-1-semialdehyde 2,1-aminomutase, coproporphyrinogen III oxidase) are important for NaHS against salt stress. ATP synthesis related proteins, malate dehydrogenase and 2, 3-bisphosphoglycerate-independent phosphoglycerate mutase were up-regulated by NaHS under salt stress. Protein metabolism related proteins and cell structure related proteins were recovered or up-regulated by NaHS under salt stress. The PPI analysis further unraveled a complicated regulation network among above biological processes to enhance the tolerance of rice seedling to salt stress under H2S treatment. Overall, our results demonstrated that H2S takes protective roles in salt tolerance by mitigating oxidative stress, recovering photosynthetic capacity, improving primary and energy metabolism, strengthening protein metabolism and consolidating cell structure in rice seedlings.


Asunto(s)
Sulfuro de Hidrógeno/farmacología , Oryza/efectos de los fármacos , Sustancias Protectoras/farmacología , Estrés Salino/efectos de los fármacos , Plantones/efectos de los fármacos , Enzimas/metabolismo , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Mapas de Interacción de Proteínas , Proteoma/metabolismo , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Sulfuros/farmacología
11.
Med Sci Monit ; 27: e927652, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33431786

RESUMEN

BACKGROUND The purpose of this study was to analyze the outcomes of revascularization exceeding 12 h after arterial injury at different sites of the lower extremity. MATERIAL AND METHODS From January 2009 to April 2017, 58 patients with 58 lower-limb arterial injuries who underwent revascularization over 12 h after trauma were included in our study. Outcomes measured, including mortality, amputation, complications, and other parameters (gait, length discrepancy, the range of movement of the knee and ankle joint, and muscle wasting) were analyzed. RESULTS External iliac artery injury (EIAI) or femoral artery injury (FAI) was affected in 4 patients, superficial femoral artery injury (SFAI) in 18, and popliteal artery injury (PAI) (including proximal gastrocnemius muscle vascular (PGMV) and proximal gastrocnemius muscle vascular [PGMV]) in 36. The median time of arterial injury was 72 h (interquartile range, 59.5). No mortality was found. Amputations were performed in 16 patients due to non-viable limbs, progressing infection, or muscle necrosis. All patients were followed up (median, 52 months; interquartile range, 5.5). Of the 42 limb-salvage patients, most had a limp, muscle wasting, or ankle and knee dysfunctions, and 26 patients with knee or ankle dysfunction underwent secondary surgery. CONCLUSIONS Although limited recanalization of blood vessels may lead to limb complications or amputations over time, the high success rate of limb salvage still merits the surgeon's best efforts.


Asunto(s)
Arteria Femoral/cirugía , Arteria Ilíaca/cirugía , Traumatismos de la Pierna/cirugía , Recuperación del Miembro/métodos , Complicaciones Posoperatorias/epidemiología , Adulto , Amputación Quirúrgica/estadística & datos numéricos , Femenino , Arteria Femoral/lesiones , Marcha , Humanos , Arteria Ilíaca/lesiones , Traumatismos de la Pierna/patología , Recuperación del Miembro/efectos adversos , Masculino , Persona de Mediana Edad , Mortalidad/tendencias , Reoperación/estadística & datos numéricos
12.
Plant Physiol Biochem ; 155: 374-383, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32805614

RESUMEN

Salt stress inhibits rice productivity seriously. Nitric oxide (NO) is an endogenous signaling molecule in plants that can improve the resistance of rice to abiotic stresses. Previous studies also showed that nitrogen metabolism is essential for rice stress-tolerance. However, the physiological and molecular mechanisms by how NO affects the nitrogen metabolisms of rice seedlings remain unclear. A hydroponic experiment with two rice varieties, Jinyuan85 (salt tolerant) and Liaojing763 (salt sensitive), was carried out to explore whether NO could alleviate the negative effects of salt stress on nitrogen metabolism and increase salt resistance of rice seedlings. The results showed that (1) the application of NO alleviated the inhibitory effects of salt stress on plant height and biomass accumulation, and increased the nitrogen content of rice leaf. (2) the accumulation of the sucrose and proline was markedly increased in salt stress after application of NO, and peroxidase activities was increased by 107% and 67.7% for Jinyuan85 and Liaojing763, respectively. (3) NO significantly increased the activities of glutamate dehydrogenase, sucrose synthase and sucrose phosphate synthase in both rice varieties under salt stress. (4) Additionally, NO regulated the expression levels of AMT, NIA and SUT genes, but these regulation effects are different with rice varieties and treatments. The results suggested that NO mainly increased the glutamate dehydrogenase and peroxidase activities and sucrose accumulation to enhance the nitrogen metabolism and antioxidative capacity, and alleviated the negative effects of salt stress on rice performance.


Asunto(s)
Óxido Nítrico/metabolismo , Nitrógeno/metabolismo , Oryza/fisiología , Tolerancia a la Sal , Plantones/fisiología , Cloruro de Sodio
13.
Plant Physiol Biochem ; 154: 782-795, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32680726

RESUMEN

Salinity-induced ethylene accumulation caused by high production of 1-aminocyclopropane-1-carboxylic acid (ACC) hinders rice plant growth and development. Nevertheless, ACC deaminase may alleviate salt stress and high ethylene production in rice cultivars under salinity stress. Pyridoxal 5'-phosphate (PLP), an ACC deaminase co-factor, could be a useful ACC inhibitor in plants; however, it has not been studied before. In the present study, the effects of PLP on the growth and morphophysiological characteristics of rice cultivars (Jinyuan 85 (JY85) and Nipponbare (NPBA) were investigated under salinity stress (control (CK), low salinity (LS), and high salinity (HS) in hydroponic conditions. The experiment was laid out in a completely randomized design (CRD) under factorial arrangement of treatments. The results showed that, compared with no PLP, exogenous application of PLP significantly inhibited ACC and ethylene production in the roots, leaves and panicles of both cultivars under salinity, and PLP was more effective at improving the physiological characteristics of both cultivars under salinity stress. Further, root morphophysiological traits and pollen viability were triggered in the PLP treatment compared to the no-PLP treatment under various salinity levels. ACC production inhibited by PLP was useful for improving the 1000-grain weight, grain yield per plant, and total plant biomass under the CK, LS and HS treatments in both rice cultivars. These results revealed that PLP, as an ACC deaminase cofactor, is a key tool for mitigating ethylene-induced effects under salinity stress and for enhancing the agronomic and morphophysiological traits of rice under saline conditions.


Asunto(s)
Etilenos/metabolismo , Oryza/fisiología , Fosfato de Piridoxal/farmacología , Estrés Salino , Liasas de Carbono-Carbono , Oryza/efectos de los fármacos , Salinidad
14.
BMC Plant Biol ; 20(1): 198, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32384870

RESUMEN

BACKGROUND: Abscisic acid (ABA) and proline play important roles in rice acclimation to different stress conditions. To study whether cross-talk exists between ABA and proline, their roles in rice acclimation to hypoxia, rice growth, root oxidative damage and endogenous ABA and proline accumulation were investigated in two different rice genotypes ('Nipponbare' (Nip) and 'Upland 502' (U502)). RESULTS: Compared with U502 seedlings, Nip seedlings were highly tolerant to hypoxic stress, with increased plant biomass and leaf photosynthesis and decreased root oxidative damage. Hypoxia significantly stimulated the accumulation of proline and ABA in the roots of both cultivars, with a higher ABA level observed in Nip than in U502, whereas the proline levels showed no significant difference in the two cultivars. The time course variation showed that the root ABA and proline contents under hypoxia increased 1.5- and 1.2-fold in Nip, and 2.2- and 0.7-fold in U502, respectively, within the 1 d of hypoxic stress, but peak ABA production (1 d) occurred before proline accumulation (5 d) in both cultivars. Treatment with an ABA synthesis inhibitor (norflurazon, Norf) inhibited proline synthesis and simultaneously aggravated hypoxia-induced oxidative damage in the roots of both cultivars, but these effects were reversed by exogenous ABA application. Hypoxia plus Norf treatment also induced an increase in glutamate (the main precursor of proline). This indicates that proline accumulation is regulated by ABA-dependent signals under hypoxic stress. Moreover, genes involved in proline metabolism were differentially expressed between the two genotypes, with expression mediated by ABA under hypoxic stress. In Nip, hypoxia-induced proline accumulation in roots was attributed to the upregulation of OsP5CS2 and downregulation of OsProDH, whereas upregulation of OsP5CS1 combined with downregulation of OsProDH enhanced the proline level in U502. CONCLUSION: These results suggest that the high tolerance of the Nip cultivar is related to the high ABA level and ABA-mediated antioxidant capacity in roots. ABA acts upstream of proline accumulation by regulating the expression of genes encoding the key enzymes in proline biosynthesis, which also partly improves rice acclimation to hypoxic stress. However, other signaling pathways enhancing tolerance to hypoxia in the Nip cultivar still need to be elucidated.


Asunto(s)
Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Oryza/metabolismo , Prolina/biosíntesis , Genotipo , Oryza/genética , Oxígeno/metabolismo , Raíces de Plantas/metabolismo
15.
Med Sci Monit ; 26: e919925, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32047141

RESUMEN

BACKGROUND Infected bone defects are therapeutic challenges. Although the induced membrane technique has been used for this problem, there is a 3% to 20.7% failure to eradicate infection, and there have been few reports about its use in tuberculous infection. We present our three-stage induced membrane technique (TSIMT) for treating infected bone defects of the lower extremity. MATERIAL AND METHODS Forty-one adult patients with infected bone defects of the lower extremities treated by TSIMT were included in a retrospective case-series study between January 2013 and June 2018. The clinical, imaging and laboratory assessment outcomes were analyzed. RESULTS In the first stage, 3 patients had ankle tuberculous bone defects and 17 patients underwent 2-4 debridements. In the second stage, the average bone defect was 6.0 cm; 1 patient needed an anterolateral thigh flap to cover the wound. In the third stage, 10 patients underwent autograft mixed allograft, and 18 cases used internal fixation. The mean follow-up period was 23.3 months. All patients achieved bone union and clinical eradication of infection. Changes in Lower Extremity Functional Scale (LEFS) scores after 1 year of TSIMT and bone union time are associated with advanced age, longer duration of infected bone defects, active smoking, and external fixation (p<0.05), but are not dependent on bone defect size, debridement times, type of bone graft, or spacer-placing time (p>0.05). CONCLUSIONS TSIMT is effective in treating infected bone defects of the lower extremities. Advanced age, longer duration of infected bone defects, active smoking, and external fixation adversely affect bone union and recovery of infected extremities in a limited time span.


Asunto(s)
Trasplante Óseo/métodos , Desbridamiento/métodos , Regeneración Tisular Dirigida/métodos , Osteomielitis/cirugía , Colgajos Quirúrgicos/trasplante , Adulto , Anciano , Femenino , Estudios de Seguimiento , Humanos , Extremidad Inferior/cirugía , Masculino , Persona de Mediana Edad , Osteomielitis/microbiología , Estudios Retrospectivos , Trasplante Autólogo/métodos , Trasplante Homólogo/métodos , Resultado del Tratamiento
16.
Plant Biotechnol J ; 18(2): 526-539, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31350932

RESUMEN

The biosynthesis of very-long-chain fatty acids (VLCFAs) and their transport are required for fibre development. However, whether other regulatory factors are involved in this process is unknown. We report here that overexpression of an Arabidopsis gene ankyrin repeat-containing protein 2A (AKR2A) in cotton promotes fibre elongation. RNA-Seq analysis was employed to elucidate the mechanisms of AKR2A in regulating cotton fibre development. The VLCFA content and the ratio of VLCFAs to short-chain fatty acids increased in AKR2A transgenic lines. In addition, AKR2A promotes fibre elongation by regulating ethylene and synergizing with the accumulation of auxin and hydrogen peroxide. Analysis of RNA-Seq data indicates that AKR2A up-regulates transcript levels of genes involved in VLCFAs' biosynthesis, ethylene biosynthesis, auxin and hydrogen peroxide signalling, cell wall and cytoskeletal organization. Furthermore, AKR2A interacted with KCS1 in Arabidopsis both in vitro and in vivo. Moreover, the VLCFA content and the ratio of VLCFAs to short-chain fatty acids increased significantly in seeds of AKR2A-overexpressing lines and AKR2A/KCS1 co-overexpressing lines, while AKR2A mutants are the opposite trend. Our results uncover a novel cotton fibre growth mechanism by which the critical regulator AKR2A promotes fibre development via activating hormone signalling cascade by mediating VLCFA biosynthesis. This study provides a potential candidate gene for improving fibre yield and quality through genetic engineering.


Asunto(s)
Fibra de Algodón , Ácidos Grasos , Gossypium , Arabidopsis/genética , Ácidos Grasos/biosíntesis , Ácidos Grasos/genética , Regulación de la Expresión Génica de las Plantas/genética , Gossypium/genética , Gossypium/metabolismo , Chaperonas Moleculares/metabolismo , Transducción de Señal/genética
17.
BMC Plant Biol ; 19(1): 108, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894123

RESUMEN

BACKGROUND: Nutrition with ammonium (NH4+) can enhance the drought tolerance of rice seedlings in comparison to nutrition with nitrate (NO3-). However, there are still no detailed studies investigating the response of nitric oxide (NO) to the different nitrogen nutrition and water regimes. To study the intrinsic mechanism underpinning this relationship, the time-dependent production of NO and its protective role in the antioxidant defense system of NH4+- or NO3--supplied rice seedlings were studied under water stress. RESULTS: An early NO burst was induced by 3 h of water stress in the roots of seedlings subjected to NH4+ treatment, but this phenomenon was not observed under NO3- treatment. Root oxidative damage induced by water stress was significantly higher for treatment with NO3- than with NH4+ due to reactive oxygen species (ROS) accumulation in the former. Inducing NO production by applying the NO donor 3 h after NO3- treatment alleviated the oxidative damage, while inhibiting the early NO burst by applying the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) increased root oxidative damage in NH4+ treatment. Application of the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester(L-NAME) completely suppressed NO synthesis in roots 3 h after NH4+ treatment and aggravated water stress-induced oxidative damage. Therefore, the aggravation of oxidative damage by L-NAME might have resulted from changes in the NOS-mediated early NO burst. Water stress also increased the activity of root antioxidant enzymes (catalase, superoxide dismutase, and ascorbate peroxidase). These were further induced by the NO donor but repressed by the NO scavenger and NOS inhibitor in NH4+-treated roots. CONCLUSION: These findings demonstrate that the NOS-mediated early NO burst plays an important role in alleviating oxidative damage induced by water stress by enhancing the antioxidant defenses in roots supplemented with NH4+.


Asunto(s)
Compuestos de Amonio/farmacología , Deshidratación , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico/metabolismo , Oryza/fisiología , Antioxidantes/metabolismo , Arginina/metabolismo , Citrulina/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Nitratos/metabolismo , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Nitroprusiato/farmacología , Oryza/efectos de los fármacos , Oxidación-Reducción , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo
18.
Front Plant Sci ; 10: 124, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30846992

RESUMEN

Salt stress in soil is a critical constraint that affects the production of rice. Salt stress hinders plant growth through osmotic stress, ionic stress, and a hormonal imbalance (especially ethylene), therefore, thoughtful efforts are needed to devise salt tolerance management strategies. 1-Methylcyclopropene (1-MCP) is an ethylene action inhibitor, which could significantly reduce ethylene production in crops and fruits. However, 1-MCPs response to the physiological, biochemical and antioxidant features of rice under salt stress, are not clear. The present study analyzed whether 1-MCP could modulate salt tolerance for different rice cultivars. Pot culture experiments were conducted in a greenhouse in 2016-2017. Two rice cultivars, Nipponbare (NPBA) and Liangyoupeijiu (LYP9) were used in this trial. The salt stress included four salt levels, 0 g NaCl/kg dry soil (control, CK), 1.5 g NaCl/ kg dry soil (Low Salt stress, LS), 4.5 g NaCl/kg dry soil (Medium Salt stress, MS), and 7.5 g NaCl/kg dry soil (Heavy Salt stress, HS). Two 1-MCP levels, 0 g (CT) and 0.04 g/pot (1-MCP) were applied at the rice booting stage in 2016 and 2017. The results showed that applying 1-MCP significantly reduced ethylene production in rice spikelets from LYP9 and NPBA by 40.2 and 23.9% (CK), 44.3 and 28.6% (LS), 28 and 25.9% (MS), respectively. Rice seedlings for NPBA died under the HS level, while application of 1-MCP reduced the ethylene production in spikelets for LYP9 by 27.4% compared with those that received no 1-MCP treatment. Applying 1-MCP improved the photosynthesis rate and SPAD value in rice leaves for both cultivars. 1-MCP enhanced the superoxide dismutase production, protein synthesis, chlorophyll contents (chl a, b, carotenoids), and decreased malondialdehyde, H2O2, and proline accumulation in rice leaves. Application of 1-MCP also modulated the aboveground biomass, and grain yield for LYP9 and NPBA by 19.4 and 15.1% (CK), 30.3 and 24% (LS), 26.4 and 55.4% (MS), respectively, and 34.5% (HS) for LYP9 compared with those that received no 1-MCP treatment. However, LYP9 displayed a better tolerance than NPBA. The results revealed that 1-MCP could be employed to modulate physiology, biochemical, and antioxidant activities in rice plants, at different levels of salt stress, as a salt stress remedy.

19.
Int J Mol Sci ; 20(3)2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30696055

RESUMEN

Salt stress is one of the key abiotic stresses causing huge productivity losses in rice. In addition, the differential sensitivity to salinity of different rice genotypes during different growth stages is a major issue in mitigating salt stress in rice. Further, information on quantitative proteomics in rice addressing such an issue is scarce. In the present study, an isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative protein quantification was carried out to investigate the salinity-responsive proteins and related biochemical features of two contrasting rice genotypes-Nipponbare (NPBA, japonica) and Liangyoupeijiu (LYP9, indica), at the maximum tillering stage. The rice genotypes were exposed to four levels of salinity: 0 (control; CK), 1.5 (low salt stress; LS), 4.5 (moderate salt stress; MS), and 7.5 g of NaCl/kg dry soil (high salt stress, HS). The iTRAQ protein profiling under different salinity conditions identified a total of 5340 proteins with 1% FDR in both rice genotypes. In LYP9, comparisons of LS, MS, and HS compared with CK revealed the up-regulation of 28, 368, and 491 proteins, respectively. On the other hand, in NPBA, 239 and 337 proteins were differentially upregulated in LS and MS compared with CK, respectively. Functional characterization by KEGG and COG, along with the GO enrichment results, suggests that the differentially expressed proteins are mainly involved in regulation of salt stress responses, oxidation-reduction responses, photosynthesis, and carbohydrate metabolism. Biochemical analysis of the rice genotypes revealed that the Na⁺ and Cl- uptake from soil to the leaves via the roots was increased with increasing salt stress levels in both rice genotypes. Further, increasing the salinity levels resulted in increased cell membrane injury in both rice cultivars, however more severely in NPBA. Moreover, the rice root activity was found to be higher in LYP9 roots compared with NPBA under salt stress conditions, suggesting the positive role of rice root activity in mitigating salinity. Overall, the results from the study add further insights into the differential proteome dynamics in two contrasting rice genotypes with respect to salt tolerance, and imply the candidature of LYP9 to be a greater salt tolerant genotype over NPBA.


Asunto(s)
Marcaje Isotópico/métodos , Oryza/genética , Oryza/fisiología , Proteínas de Plantas/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cloruros/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Genes de Plantas , Genotipo , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Sodio/metabolismo , Suelo/química
20.
Plant Physiol Biochem ; 132: 128-137, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30189416

RESUMEN

Ammonium (NH4+) can enhance the water stress induced drought tolerance of rice seedlings in comparison to nitrate (NO3-) nutrition. To investigate the mechanism involved in nitrogen (N) uptake, N metabolism and transcript abundance of associated genes, a hydroponic experiment was conducted in which different N sources were supplied to seedlings growing under water stress. Compared to nitrate, ammonium prevented water stress-induced biomass, leaf SPAD and photosynthesis reduction to a significantly larger extent. Water stress significantly increased root nitrate reductase (NR) and nitrite reductase (NiR) activities, but decreased leaf NiR and glutamate synthetase (GS) activities under NO3- supply, causing lower nitrate content in roots and higher in leaves. In contrast, under NH4+ supply root GS and glutamine oxoglutarate aminotransferase (GOGAT) activities were significantly decreased under water stress, but remained higher in leaves, compared to NO3- treatment, which was beneficial for the transport and assimilation of ammonium in leaves. 15N tracing assays demonstrated that rice 15N uptake rate and accumulation were significant reduced under water stress, but were higher in plants supplied with NH4+ than with NO3-. Therefore, the formers showed higher leaf soluble sugar, proline and amino acids contents, and in turn, associated with a higher photosynthesis rate and biomass accumulation. Most genes related to NO3- uptake and reduction in roots and leaves were down-regulated; however, two ammonium transporter genes closely related to NH4+ uptake (AMT1;2 and AMT1;3) were up-regulated in response to water stress. Overall, our findings suggest that ammonium supply alleviated waters tress in rice seedlings, mainly by increasing root NH4+ uptake and leaf N metabolism.


Asunto(s)
Compuestos de Amonio/metabolismo , Oryza/fisiología , Polietilenglicoles/toxicidad , Plantones/fisiología , Aminoácidos/análisis , Carbohidratos/análisis , Deshidratación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Nitratos/metabolismo , Nitrógeno/farmacología , Oryza/efectos de los fármacos , Oryza/genética , Oryza/crecimiento & desarrollo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Transpiración de Plantas/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...