Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37447864

RESUMEN

With the development of smart agriculture, deep learning is playing an increasingly important role in crop disease recognition. The existing crop disease recognition models are mainly based on convolutional neural networks (CNN). Although traditional CNN models have excellent performance in modeling local relationships, it is difficult to extract global features. This study combines the advantages of CNN in extracting local disease information and vision transformer in obtaining global receptive fields to design a hybrid model called MSCVT. The model incorporates the multiscale self-attention module, which combines multiscale convolution and self-attention mechanisms and enables the fusion of local and global features at both the shallow and deep levels of the model. In addition, the model uses the inverted residual block to replace normal convolution to maintain a low number of parameters. To verify the validity and adaptability of MSCVT in the crop disease dataset, experiments were conducted in the PlantVillage dataset and the Apple Leaf Pathology dataset, and obtained results with recognition accuracies of 99.86% and 97.50%, respectively. In comparison with other CNN models, the proposed model achieved advanced performance in both cases. The experimental results show that MSCVT can obtain high recognition accuracy in crop disease recognition and shows excellent adaptability in multidisease recognition and small-scale disease recognition.


Asunto(s)
Agricultura , Fabaceae , Suministros de Energía Eléctrica , Redes Neurales de la Computación , Orientación Espacial
2.
J Healthc Eng ; 2021: 5853128, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34840700

RESUMEN

The rapid development of intelligent manufacturing provides strong support for the intelligent medical service ecosystem. Researchers are committed to building Wise Information Technology of 120 (WIT 120) for residents and medical personnel with the concept of simple smart medical care and through core technologies such as Internet of Things, Big Data Analytics, Artificial Intelligence, and microservice framework, to improve patient safety, medical quality, clinical efficiency, and operational benefits. Among them, how to use computers and deep learning technology to assist in the diagnosis of tongue images and realize intelligent tongue diagnosis has become a major trend. Tongue crack is an important feature of tongue states. Not only does change of tongue crack states reflect objectively and accurately changed circumstances of some typical diseases and TCM syndrome but also semantic segmentation of fissured tongue can combine the other features of tongue states to further improve tongue diagnosis systems' identification accuracy. Although computer tongue diagnosis technology has made great progress, there are few studies on the fissured tongue, and most of them focus on the analysis of tongue coating and body. In this paper, we do systematic and in-depth researches and propose an improved U-Net network for image semantic segmentation of fissured tongue. By introducing the Global Convolution Network module into the encoder part of U-Net, it solves the problem that the encoder part is relatively simple and cannot extract relatively abstract high-level semantic features. Finally, the method is verified by experiments. The improved U-Net network has a better segmentation effect and higher segmentation accuracy for fissured tongue image dataset. It can be used to design a computer-aided tongue diagnosis system.


Asunto(s)
Inteligencia Artificial , Ecosistema , Humanos , Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Lengua/diagnóstico por imagen
3.
ScientificWorldJournal ; 2014: 753860, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25003153

RESUMEN

Large exposure of skin area of an image is considered obscene. This only fact may lead to many false images having skin-like objects and may not detect those images which have partially exposed skin area but have exposed erotogenic human body parts. This paper presents a novel method for detecting nipples from pornographic image contents. Nipple is considered as an erotogenic organ to identify pornographic contents from images. In this research Gentle Adaboost (GAB) haar-cascade classifier and haar-like features used for ensuring detection accuracy. Skin filter prior to detection made the system more robust. The experiment showed that, considering accuracy, haar-cascade classifier performs well, but in order to satisfy detection time, train-cascade classifier is suitable. To validate the results, we used 1198 positive samples containing nipple objects and 1995 negative images. The detection rates for haar-cascade and train-cascade classifiers are 0.9875 and 0.8429, respectively. The detection time for haar-cascade is 0.162 seconds and is 0.127 seconds for train-cascade classifier.


Asunto(s)
Algoritmos , Literatura Erótica , Interpretación de Imagen Asistida por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Humanos , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA