Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 24(4): 513-525, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35393539

RESUMEN

DNA damage shuts down genome-wide transcription to prevent transcriptional mutagenesis and to initiate repair signalling, but the mechanism to stall elongating RNA polymerase II (Pol II) is not fully understood. Central to the DNA damage response, poly(ADP-ribose) polymerase 1 (PARP1) initiates DNA repair by translocating to the lesions where it catalyses protein poly(ADP-ribosylation). Here we report that PARP1 inhibits Pol II elongation by inactivating the transcription elongation factor P-TEFb, a CDK9-cyclin T1 (CycT1) heterodimer. After sensing damage, the activated PARP1 binds to transcriptionally engaged P-TEFb and modifies CycT1 at multiple positions, including histidine residues that are rarely used as an acceptor site. This prevents CycT1 from undergoing liquid-liquid phase separation that is required for CDK9 to hyperphosphorylate Pol II and to stimulate elongation. Functionally, poly(ADP-ribosylation) of CycT1 promotes DNA repair and cell survival. Thus, the P-TEFb-PARP1 signalling plays a protective role in transcription quality control and genomic stability maintenance after DNA damage.


Asunto(s)
Daño del ADN , Factor B de Elongación Transcripcional Positiva , ADP-Ribosilación , Ciclina T/química , Ciclina T/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
2.
J Proteomics ; 248: 104351, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34411762

RESUMEN

Ocular surface changes may develop in patients with chronic renal failure (CRF) undergoing hemodialysis. In recent years, an association of CRF with dry eye syndrome has been emphasized. However, tear proteomics of CRF patients has not been analyzed. Here, we performed systematic profiling of the tear film proteins in CRF patients through use of isobaric tags for relative and absolute quantitative (iTRAQ) MS/MS, aiming to identify associations between dry eye symptoms and expression of tear proteomic changes in patients with CRF undergoing hemodialysis. Twenty CRF patients and ten healthy subjects underwent a series of ophthalmic examinations. Tear samples from the participants were analyzed by iTRAQ approach. A total of 1139 tear proteins were screened, and 212 differentially expressed proteins were identified. The pattern changes included 77 whose expression levels were upregulated (fold increase >1.2) whereas 135 others that were downregulated (fold decrease <1/1.2). Bioinformatics analysis showed that these proteins were significantly enriched in lipid metabolism, inflammatory, and immune response pathways. Furthermore, APOA1, APOA4, APOB, APOE, S100A8, S100A9, S100A4, HSP90B and other molecules were significantly changed. Our study elucidated the characteristics of tear dynamics and protein markers in CRF patients undergoing hemodialysis. Significance: Despite the association of chronic renal failure (CRF) with dry eye disease, there are no reports describing potentially important differentially expressed tear proteins in CRF patients undergoing hemodialysis. It is still a challenge to obtain a comprehensive description of the pathogenesis of dry eye in CRF patients which hinders establishing a patient specific therapeutic scheme. Our study is the first iTRAQ proteomics analysis of the tears of patients with CRF, which reveals the changes in the protein expression profile in CRF patients afflicted with dry eye disease. The identity was verified of some relevant differentially expressed proteins, and they may be candidate diagnostic markers of dry eye disease in patients with CRF. These tear film protein constituents found in hemodialysis patients can be of important clinical significance in treating this condition. SIGNIFICANCE: Despite the association of chronic renal failure (CRF) with dry eye disease, there are no reports describing potentially important differentially expressed tear proteins in CRF patients undergoing hemodialysis. It is still a challenge to obtain a comprehensive description of the pathogenesis of dry eye in CRF patients which hinders establishing a patient specific therapeutic scheme. Our study is the first iTRAQ proteomics analysis of the tears of patients with CRF, which reveals the changes in the protein expression profile in CRF patients afflicted with dry eye disease. The identity was verified of some relevant differentially expressed proteins, and they may be candidate diagnostic markers of dry eye disease in patients with CRF. These tear film protein constituents found in hemodialysis patients can be of important clinical significance in treating this condition.


Asunto(s)
Síndromes de Ojo Seco , Fallo Renal Crónico , Síndromes de Ojo Seco/diagnóstico , Síndromes de Ojo Seco/etiología , Humanos , Fallo Renal Crónico/terapia , Proteómica , Espectrometría de Masas en Tándem , Lágrimas
3.
Elife ; 102021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33988507

RESUMEN

The human kinome comprises 538 kinases playing essential functions by catalyzing protein phosphorylation. Annotation of subcellular distribution of the kinome greatly facilitates investigation of normal and disease mechanisms. Here, we present Kinome Atlas (KA), an image-based map of the kinome annotated to 10 cellular compartments. 456 epitope-tagged kinases, representing 85% of the human kinome, were expressed in HeLa cells and imaged by immunofluorescent microscopy under a similar condition. KA revealed kinase family-enriched subcellular localizations and discovered a collection of new kinase localizations at mitochondria, plasma membrane, extracellular space, and other structures. Furthermore, KA demonstrated the role of liquid-liquid phase separation in formation of kinase condensates. Identification of MOK as a mitochondrial kinase revealed its function in cristae dynamics, respiration, and oxidative stress response. Although limited by possible mislocalization due to overexpression or epitope tagging, this subcellular map of the kinome can be used to refine regulatory mechanisms involving protein phosphorylation.


Asunto(s)
Mitocondrias/enzimología , Proteínas Quinasas , Fracciones Subcelulares/enzimología , Epítopos , Células HeLa , Humanos , Microscopía Fluorescente , Orgánulos , Fosforilación
4.
Bioorg Chem ; 96: 103592, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32044517

RESUMEN

In the effort to develop novel quinoline derivatives for the treatment of liver cancer, we synthesized a series of N'-Substituted methylene-4-(quinoline-4-amino) benzoylhydrazides and evaluated their biological activities as anticancer agents. Compounds 5h and 5j were found to be the potent antiproliferative agents against HepG2 cell line with an IC50 value of 12.6 ± 0.1 µM and 27.3 ± 1.7 µM, respectively. The most effective compound 5h also exhibited potent cytotoxicity against SMMC-7721 and Huh7 cells with IC50 values of 9.6 ± 0.7 µM and 6.3 ± 0.2 µM, respectively. Inspiringly, both 5h and 5j exhibited lower cytotoxic property in normal cells than hepatic carcinoma cells. Compounds 5h and 5j could down-regulate mRNA level of c-Myc and expression level of c-Myc. Meanwhile, they decreased expression level of anti-apoptotic protein Bcl-2 and increased expression levels of pro-apoptotic protein Bax and cleaved PARP with reference to tubulin. So various assays including cell colony formation, cell cycle distribution, as well as cell apoptosis and migration were performed to understand their antitumor role. It was confirmed that 5h and 5j inhibited the growth of HepG2 cells due to their anti-survival effect, induction of cell cycle arrest and cell apoptosis, and inhibition of cell migration. These results demonstrated that 5h might be as potential lead compounds to develop anticancer agents for the treatment of hepatocellular carcinoma.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Hidrazinas/química , Hidrazinas/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Hidrazinas/síntesis química , Neoplasias Hepáticas/metabolismo , Quinolinas/síntesis química , Quinolinas/química , Quinolinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...