Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(8): 112904, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37531251

RESUMEN

Acquisition of neuronal circuit architectures, central to understanding brain function and dysfunction, remains prohibitively challenging. Here I report the development of a simultaneous and sequential octuple-sexdecuple whole-cell patch-clamp recording system that enables architectural reconstruction of complex cortical circuits. The method unveils the canonical layer 1 single bouquet cell (SBC)-led disinhibitory neuronal circuits across the mouse somatosensory, motor, prefrontal, and medial entorhinal cortices. The ∼1,500-neuron modular circuits feature the translaminar, unidirectional, minicolumnar, and independent disinhibition and optimize cortical complexity, subtlety, plasticity, variation, and redundancy. Moreover, architectural reconstruction uncovers age-dependent deficits at SBC-disinhibited synapses in the senescence-accelerated mouse prone 8, an animal model of Alzheimer's disease. The deficits exhibit the characteristic Alzheimer's-like cortical spread and correlation with cognitive impairments. These findings decrypt operations of the elementary processing units in healthy and Alzheimer's mouse cortices and validate the efficacy of octuple-sexdecuple patch-clamp recordings for architectural reconstruction of complex neuronal circuits.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Animales , Neuronas/fisiología , Corteza Entorrinal , Técnicas de Placa-Clamp
2.
Elife ; 122023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37159499

RESUMEN

The cerebellum is involved in learning of fine motor skills, yet whether presynaptic plasticity contributes to such learning remains elusive. Here, we report that the EPAC-PKCε module has a critical role in a presynaptic form of long-term potentiation in the cerebellum and motor behavior in mice. Presynaptic cAMP-EPAC-PKCε signaling cascade induces a previously unidentified threonine phosphorylation of RIM1α, and thereby initiates the assembly of the Rab3A-RIM1α-Munc13-1 tripartite complex that facilitates docking and release of synaptic vesicles. Granule cell-specific blocking of EPAC-PKCε signaling abolishes presynaptic long-term potentiation at the parallel fiber to Purkinje cell synapses and impairs basic performance and learning of cerebellar motor behavior. These results unveil a functional relevance of presynaptic plasticity that is regulated through a novel signaling cascade, thereby enriching the spectrum of cerebellar learning mechanisms.


Asunto(s)
Potenciación a Largo Plazo , Sinapsis , Animales , Ratones , Cerebelo/fisiología , Factores de Intercambio de Guanina Nucleótido , Potenciación a Largo Plazo/fisiología , Neuronas , Células de Purkinje , Sinapsis/fisiología
3.
Nat Neurosci ; 24(5): 746-752, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33821000

RESUMEN

Serotonin (5-HT) is a phylogenetically conserved monoamine neurotransmitter modulating important processes in the brain. To directly visualize the release of 5-HT, we developed a genetically encoded G-protein-coupled receptor (GPCR)-activation-based 5-HT (GRAB5-HT) sensor with high sensitivity, high selectivity, subsecond kinetics and subcellular resolution. GRAB5-HT detects 5-HT release in multiple physiological and pathological conditions in both flies and mice and provides new insights into the dynamics and mechanisms of 5-HT signaling.


Asunto(s)
Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neuronas Serotoninérgicas/metabolismo , Serotonina/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratas , Transducción de Señal/fisiología
4.
J Neurosci ; 41(11): 2318-2328, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33627325

RESUMEN

Neuromodulatory communication among various neurons and non-neuronal cells mediates myriad physiological and pathologic processes, yet defining regulatory and functional features of neuromodulatory transmission remains challenging because of limitations of available monitoring tools. Recently developed genetically encoded neuromodulatory transmitter sensors, when combined with superresolution and/or deconvolution microscopy, allow the first visualization of neuromodulatory transmission with nanoscale or microscale spatiotemporal resolution. In vitro and in vivo experiments have validated several high-performing sensors to have the qualities necessary for demarcating fundamental synaptic properties of neuromodulatory transmission, and initial analysis has unveiled unexpected fine control and precision of neuromodulation. These new findings underscore the importance of synaptic dynamics in synapse-, subcellular-, and circuit-specific neuromodulation, as well as the prospect of genetically encoded transmitter sensors in expanding our knowledge of various behaviors and diseases, including Alzheimer's disease, sleeping disorders, tumorigenesis, and many others.


Asunto(s)
Acetilcolina/fisiología , Monoaminas Biogénicas/fisiología , Comunicación Celular/genética , Neuronas/fisiología , Neurotransmisores/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Humanos
5.
Mol Psychiatry ; 26(2): 443-455, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33277628

RESUMEN

Neural communication orchestrates a variety of behaviors, yet despite impressive effort, delineating transmission properties of neuromodulatory communication remains a daunting task due to limitations of available monitoring tools. Recently developed genetically encoded neurotransmitter sensors, when combined with superresolution and deconvolution microscopic techniques, enable the first micro- and nano-scopic visualization of neuromodulatory transmission. Here we introduce this image analysis method by presenting its biophysical foundation, practical solutions, biological validation, and broad applicability. The presentation illustrates how the method resolves fundamental synaptic properties of neuromodulatory transmission, and the new data unveil unexpected fine control and precision of rodent and human neuromodulation. The findings raise the prospect of rapid advances in the understanding of neuromodulatory transmission essential for resolving the physiology or pathogenesis of various behaviors and diseases.


Asunto(s)
Encéfalo , Neurotransmisores
7.
Neuron ; 102(4): 745-761.e8, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-30922875

RESUMEN

Norepinephrine (NE) is a key biogenic monoamine neurotransmitter involved in a wide range of physiological processes. However, its precise dynamics and regulation remain poorly characterized, in part due to limitations of available techniques for measuring NE in vivo. Here, we developed a family of GPCR activation-based NE (GRABNE) sensors with a 230% peak ΔF/F0 response to NE, good photostability, nanomolar-to-micromolar sensitivities, sub-second kinetics, and high specificity. Viral- or transgenic-mediated expression of GRABNE sensors was able to detect electrical-stimulation-evoked NE release in the locus coeruleus (LC) of mouse brain slices, looming-evoked NE release in the midbrain of live zebrafish, as well as optogenetically and behaviorally triggered NE release in the LC and hypothalamus of freely moving mice. Thus, GRABNE sensors are robust tools for rapid and specific monitoring of in vivo NE transmission in both physiological and pathological processes.


Asunto(s)
Proteínas Fluorescentes Verdes/genética , Hipotálamo/metabolismo , Locus Coeruleus/metabolismo , Mesencéfalo/metabolismo , Norepinefrina/metabolismo , Receptores Adrenérgicos alfa 2/genética , Animales , Animales Modificados Genéticamente , Estimulación Eléctrica , Técnicas In Vitro , Microscopía Intravital , Ratones , Microscopía Fluorescente , Optogenética , Ingeniería de Proteínas , Pez Cebra
8.
Nat Biotechnol ; 36(8): 726-737, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29985477

RESUMEN

The neurotransmitter acetylcholine (ACh) regulates a diverse array of physiological processes throughout the body. Despite its importance, cholinergic transmission in the majority of tissues and organs remains poorly understood owing primarily to the limitations of available ACh-monitoring techniques. We developed a family of ACh sensors (GACh) based on G-protein-coupled receptors that has the sensitivity, specificity, signal-to-noise ratio, kinetics and photostability suitable for monitoring ACh signals in vitro and in vivo. GACh sensors were validated with transfection, viral and/or transgenic expression in a dozen types of neuronal and non-neuronal cells prepared from multiple animal species. In all preparations, GACh sensors selectively responded to exogenous and/or endogenous ACh with robust fluorescence signals that were captured by epifluorescence, confocal, and/or two-photon microscopy. Moreover, analysis of endogenous ACh release revealed firing-pattern-dependent release and restricted volume transmission, resolving two long-standing questions about central cholinergic transmission. Thus, GACh sensors provide a user-friendly, broadly applicable tool for monitoring cholinergic transmission underlying diverse biological processes.


Asunto(s)
Acetilcolina/metabolismo , Colorantes Fluorescentes/química , Receptores Acoplados a Proteínas G/genética , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Encéfalo/metabolismo , Drosophila/fisiología , Células HEK293 , Humanos , Técnicas In Vitro , Límite de Detección , Ratones , Mutagénesis Sitio-Dirigida , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Relación Señal-Ruido
9.
Neuron ; 98(4): 783-800.e4, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29706584

RESUMEN

How signaling molecules achieve signal diversity and specificity is a long-standing cell biology question. Here we report the development of a targeted delivery method that permits specific expression of homologous Ras-family small GTPases (i.e., Ras, Rap2, and Rap1) in different subcellular microdomains, including the endoplasmic reticulum, lipid rafts, bulk membrane, lysosomes, and Golgi complex, in rodent hippocampal CA1 neurons. The microdomain-targeted delivery, combined with multicolor fluorescence protein tagging and high-resolution dual-quintuple simultaneous patch-clamp recordings, allows systematic analysis of microdomain-specific signaling. The analysis shows that Ras signals long-term potentiation via endoplasmic reticulum PI3K and lipid raft ERK, whereas Rap2 and Rap1 signal depotentiation and long-term depression via bulk membrane JNK and lysosome p38MAPK, respectively. These results establish an effective subcellular microdomain-specific targeted delivery method and unveil subcellular microdomain-specific signaling as the mechanism for homologous Ras and Rap to achieve signal diversity and specificity to control multiple forms of synaptic plasticity.


Asunto(s)
Plasticidad Neuronal , Neuronas/metabolismo , Proteínas de Unión al GTP rap/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Proteínas ras/metabolismo , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Retículo Endoplásmico/metabolismo , Potenciales Postsinápticos Excitadores , Aparato de Golgi/metabolismo , Técnicas In Vitro , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Lisosomas/metabolismo , Sistema de Señalización de MAP Quinasas , Microdominios de Membrana/metabolismo , Ratones , Técnicas de Placa-Clamp , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Receptores AMPA/metabolismo , Transducción de Señal , Transmisión Sináptica , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Neuron ; 96(4): 897-909.e5, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29056294

RESUMEN

Glucagon-like Peptide 1 (GLP-1)-expressing neurons in the hindbrain send robust projections to the paraventricular nucleus of the hypothalamus (PVN), which is involved in the regulation of food intake. Here, we describe that stimulation of GLP-1 afferent fibers within the PVN is sufficient to suppress food intake independent of glutamate release. We also show that GLP-1 receptor (GLP-1R) activation augments excitatory synaptic strength in PVN corticotropin-releasing hormone (CRH) neurons, with GLP-1R activation promoting a protein kinase A (PKA)-dependent signaling cascade leading to phosphorylation of serine S845 on GluA1 AMPA receptors and their trafficking to the plasma membrane. Finally, we show that postnatal depletion of GLP-1R in the PVN increases food intake and causes obesity. This study provides a comprehensive multi-level (circuit, synaptic, and molecular) explanation of how food intake behavior and body weight are regulated by endogenous central GLP-1. VIDEO ABSTRACT.


Asunto(s)
Hormona Liberadora de Corticotropina/fisiología , Ingestión de Alimentos/fisiología , Péptido 1 Similar al Glucagón/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Receptores AMPA/fisiología , Animales , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Receptor del Péptido 1 Similar al Glucagón/fisiología , Masculino , Ratones , Ratones Transgénicos , Neuronas/fisiología , Fosforilación , Receptores AMPA/metabolismo , Transducción de Señal/fisiología
11.
Small ; 13(40)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28809097

RESUMEN

Intermolecular interactions dominate the behavior of signal transduction in various physiological and pathological cell processes, yet assessing these interactions remains a challenging task. Here, this study reports a single-molecule force spectroscopic method that enables functional delineation of two interaction sites (≈35 pN and ≈90 pN) between signaling effectors Ras and BRaf in the canonical mitogen-activated protein kinase (MAPK) pathway. This analysis reveals mutations on BRaf at Q257 and A246, two sites frequently linked to cardio-faciocutaneous syndrome, result in ≈10-30 pN alterations in RasBRaf intermolecular binding force. The magnitude of changes in RasBRaf binding force correlates with the size of alterations in protein affinity and in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-sensitive glutamate receptor (-R)-mediated synaptic transmission in neurons expressing replacement BRaf mutants, and predicts the extent of learning impairments in animals expressing replacement BRaf mutants. These results establish single-molecule force spectroscopy as an effective platform for evaluating the piconewton-level interaction of signaling molecules and predicting the behavior outcome of signal transduction.


Asunto(s)
Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Animales , Células Cultivadas , Humanos , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Pinzas Ópticas , Transducción de Señal/genética , Transducción de Señal/fisiología
13.
Genes Dev ; 31(6): 537-552, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28404629

RESUMEN

Rapid advances in genetics are linking mutations on genes to diseases at an exponential rate, yet characterizing the gene-mutation-cell-behavior relationships essential for precision medicine remains a daunting task. More than 350 mutations on small GTPase BRaf are associated with various tumors, and ∼40 mutations are associated with the neurodevelopmental disorder cardio-facio-cutaneous syndrome (CFC). We developed a fast cost-effective lentivirus-based rapid gene replacement method to interrogate the physiopathology of BRaf and ∼50 disease-linked BRaf mutants, including all CFC-linked mutants. Analysis of simultaneous multiple patch-clamp recordings from 6068 pairs of rat neurons with validation in additional mouse and human neurons and multiple learning tests from 1486 rats identified BRaf as the key missing signaling effector in the common synaptic NMDA-R-CaMKII-SynGap-Ras-BRaf-MEK-ERK transduction cascade. Moreover, the analysis creates the original big data unveiling three general features of BRaf signaling. This study establishes the first efficient procedure that permits large-scale functional analysis of human disease-linked mutations essential for precision medicine.


Asunto(s)
Sistema de Señalización de MAP Quinasas/genética , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Transmisión Sináptica/genética , Animales , Células Cultivadas , Enfermedad/genética , Femenino , Técnicas de Transferencia de Gen , Humanos , Lentivirus/genética , Masculino , Ratones Endogámicos C57BL , Neuronas/fisiología , Ratas Sprague-Dawley , Técnicas de Cultivo de Tejidos
14.
Proc Natl Acad Sci U S A ; 112(50): 15474-9, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26621723

RESUMEN

Protein Numb, first identified as a cell-fate determinant in Drosophila, has been shown to promote the development of neurites in mammals and to be cotransported with endocytic receptors in clathrin-coated vesicles in vitro. Nevertheless, its function in mature neurons has not yet been elucidated. Here we show that cerebellar Purkinje cells (PCs) express high levels of Numb during adulthood and that conditional deletion of Numb in PCs is sufficient to impair motor coordination despite maintenance of a normal cerebellar cyto-architecture. Numb proved to be critical for internalization and recycling of metabotropic glutamate 1 receptor (mGlu1) in PCs. A significant decrease of mGlu1 and an inhibition of long-term depression at the parallel fiber-PC synapse were observed in conditional Numb knockout mice. Indeed, the trafficking of mGlu1 induced by agonists was inhibited significantly in these mutants, but the expression of ionotropic glutamate receptor subunits and of mGlu1-associated proteins was not affected by the loss of Numb. Moreover, transient and persistent forms of mGlu1 plasticity were robustly induced in mutant PCs, suggesting that they do not require mGlu1 trafficking. Together, our data demonstrate that Numb is a regulator for constitutive expression and dynamic transport of mGlu1.


Asunto(s)
Cerebelo/metabolismo , Proteínas de la Membrana/deficiencia , Actividad Motora , Proteínas del Tejido Nervioso/deficiencia , Células de Purkinje/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapsis/metabolismo , Animales , Cerebelo/efectos de los fármacos , Cerebelo/crecimiento & desarrollo , Potenciación a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo , Potenciales de la Membrana/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones Noqueados , Morfogénesis/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Células de Purkinje/citología , Células de Purkinje/efectos de los fármacos , Sinapsis/efectos de los fármacos
15.
Genes Dev ; 29(14): 1535-51, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26220996

RESUMEN

CaV3.2 T-type calcium channels, encoded by CACNA1H, are expressed throughout the brain, yet their general function remains unclear. We discovered that CaV3.2 channels control NMDA-sensitive glutamatergic receptor (NMDA-R)-mediated transmission and subsequent NMDA-R-dependent plasticity of AMPA-R-mediated transmission at rat central synapses. Interestingly, functional CaV3.2 channels primarily incorporate into synapses, replace existing CaV3.2 channels, and can induce local calcium influx to control NMDA transmission strength in an activity-dependent manner. Moreover, human childhood absence epilepsy (CAE)-linked hCaV3.2(C456S) mutant channels have a higher channel open probability, induce more calcium influx, and enhance glutamatergic transmission. Remarkably, cortical expression of hCaV3.2(C456S) channels in rats induces 2- to 4-Hz spike and wave discharges and absence-like epilepsy characteristic of CAE patients, which can be suppressed by AMPA-R and NMDA-R antagonists but not T-type calcium channel antagonists. These results reveal an unexpected role of CaV3.2 channels in regulating NMDA-R-mediated transmission and a novel epileptogenic mechanism for human CAE.


Asunto(s)
Canales de Calcio/genética , Canales de Calcio/metabolismo , Epilepsia Tipo Ausencia/fisiopatología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Epilepsia Tipo Ausencia/genética , Regulación de la Expresión Génica , Humanos , Mutación , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos , Sinapsis/metabolismo
16.
Biomed Opt Express ; 6(1): 244, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25656083

RESUMEN

We correct the omission of the construct and protein purification method in our recent paper [Biomed. Opt. Express 4(12), 2835-2845 (2013)].[This corrects the article on p. 2835 in vol. 4, PMID: 24409384.].

17.
Nat Protoc ; 10(3): 397-412, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25654757

RESUMEN

Deciphering neuronal circuitry is central to understanding brain function and dysfunction, yet it remains a daunting task. To facilitate the dissection of neuronal circuits, a process requiring functional analysis of synaptic connections and morphological identification of interconnected neurons, we present here a method for stable simultaneous octuple patch-clamp recordings. This method allows physiological analysis of synaptic interconnections among 4-8 simultaneously recorded neurons and/or 10-30 sequentially recorded neurons, and it allows anatomical identification of >85% of recorded interneurons and >99% of recorded principal neurons. We describe how to apply the method to rodent tissue slices; however, it can be used on other model organisms. We also describe the latest refinements and optimizations of mechanics, electronics, optics and software programs that are central to the realization of a combined single- and two-photon microscopy-based, optogenetics- and imaging-assisted, stable, simultaneous quadruple-viguple patch-clamp recording system. Setting up the system, from the beginning of instrument assembly and software installation to full operation, can be completed in 3-4 d.


Asunto(s)
Encéfalo/fisiología , Vías Nerviosas/fisiología , Neurociencias/métodos , Optogenética/métodos , Técnicas de Placa-Clamp/métodos , Sinapsis/fisiología , Animales , Encéfalo/citología , Ratones
18.
Genes Dev ; 28(3): 273-89, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24493647

RESUMEN

Fragile X syndrome, caused by the loss of Fmr1 gene function, is the most common form of inherited mental retardation, with no effective treatment. Using a tractable animal model, we investigated mechanisms of action of a few FDA-approved psychoactive drugs that modestly benefit the cognitive performance in fragile X patients. Here we report that compounds activating serotonin (5HT) subtype 2B receptors (5HT2B-Rs) or dopamine (DA) subtype 1-like receptors (D1-Rs) and/or those inhibiting 5HT2A-Rs or D2-Rs moderately enhance Ras-PI3K/PKB signaling input, GluA1-dependent synaptic plasticity, and learning in Fmr1 knockout mice. Unexpectedly, combinations of these 5HT and DA compounds at low doses synergistically stimulate Ras-PI3K/PKB signal transduction and GluA1-dependent synaptic plasticity and remarkably restore normal learning in Fmr1 knockout mice without causing anxiety-related side effects. These findings suggest that properly dosed and combined FDA-approved psychoactive drugs may effectively treat the cognitive impairment associated with fragile X syndrome.


Asunto(s)
Dopaminérgicos , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Aprendizaje/efectos de los fármacos , Serotoninérgicos , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Proteínas ras/metabolismo , Animales , Modelos Animales de Enfermedad , Dopaminérgicos/farmacología , Dopaminérgicos/uso terapéutico , Relación Dosis-Respuesta a Droga , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores AMPA/genética , Receptores AMPA/metabolismo , Serotoninérgicos/farmacología , Serotoninérgicos/uso terapéutico
20.
Nat Neurosci ; 16(2): 210-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23313910

RESUMEN

Deciphering the interneuronal circuitry is central to understanding brain functions, yet it remains a challenging task in neurobiology. Using simultaneous quadruple-octuple in vitro and dual in vivo whole-cell recordings, we found two previously unknown interneuronal circuits that link cortical layer 1-3 (L1-3) interneurons and L5 pyramidal neurons in the rat neocortex. L1 single-bouquet cells (SBCs) preferentially formed unidirectional inhibitory connections on L2/3 interneurons that inhibited the entire dendritic-somato-axonal axis of ∼1% of L5 pyramidal neurons located in the same column. In contrast, L1 elongated neurogliaform cells (ENGCs) frequently formed mutual inhibitory and electric connections with L2/3 interneurons, and these L1-3 interneurons inhibited the distal apical dendrite of >60% of L5 pyramidal neurons across multiple columns. Functionally, SBC→L2/3 interneuron→L5 pyramidal neuronal circuits disinhibited and ENGC↔L2/3 interneuron→L5 pyramidal neuronal circuits inhibited the initiation of dendritic complex spikes in L5 pyramidal neurons. As dendritic complex spikes can serve coincidence detection, these cortical interneuronal circuits may be essential for salience selection.


Asunto(s)
Corteza Cerebral/citología , Interneuronas/clasificación , Interneuronas/fisiología , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Factores de Edad , Análisis de Varianza , Animales , Tomografía con Microscopio Electrónico , Femenino , Técnicas In Vitro , Interneuronas/ultraestructura , Masculino , Potenciales de la Membrana/fisiología , Inhibición Neural/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Vibrisas/inervación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...