Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Haematologica ; 108(9): 2435-2443, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36924240

RESUMEN

The diagnosis of myelodysplastic syndromes (MDS) might be challenging and relies on the convergence of cytological, cytogenetic, and molecular factors. Multiparametric flow cytometry (MFC) helps diagnose MDS, especially when other features do not contribute to the decision-making process, but its usefulness remains underestimated, mostly due to a lack of standardization of cytometers. We present here an innovative model integrating artificial intelligence (AI) with MFC to improve the diagnosis and the classification of MDS. We develop a machine learning model through an elasticnet algorithm directed on a cohort of 191 patients, only based on flow cytometry parameters selected by the Boruta algorithm, to build a simple but reliable prediction score with five parameters. Our AI-assisted MDS prediction score greatly improves the sensitivity of the Ogata score while keeping an excellent specificity validated on an external cohort of 89 patients with an Area Under the Curve of 0.935. This model allows the diagnosis of both high- and low-risk MDS with 91.8% sensitivity and 92.5% specificity. Interestingly, it highlights a progressive evolution of the score from clonal hematopoiesis of indeterminate potential (CHIP) to highrisk MDS, suggesting a linear evolution between these different stages. By significantly decreasing the overall misclassification of 52% for patients with MDS and of 31.3% for those without MDS (P=0.02), our AI-assisted prediction score outperforms the Ogata score and positions itself as a reliable tool to help diagnose MDS.


Asunto(s)
Inteligencia Artificial , Síndromes Mielodisplásicos , Humanos , Citometría de Flujo , Síndromes Mielodisplásicos/diagnóstico , Aprendizaje Automático
2.
BMC Cancer ; 22(1): 972, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36088307

RESUMEN

BACKGROUND: Myelodysplastic syndromes (MDS) are clonal hematopoietic diseases of the elderly characterized by chronic cytopenias, ineffective and dysplastic haematopoiesis, recurrent genetic abnormalities and increased risk of progression to acute myeloid leukemia. A challenge of routine laboratory Complete Blood Counts (CBC) is to correctly identify MDS patients while simultaneously avoiding excess smear reviews. To optimize smear review, the latest generations of hematology analyzers provide new cell population data (CPD) parameters with an increased ability to screen MDS, among which the previously described MDS-CBC Score, based on Absolute Neutrophil Count (ANC), structural neutrophil dispersion (Ne-WX) and mean corpuscular volume (MCV). Ne-WX is increased in the presence of hypogranulated/degranulated neutrophils, a hallmark of dysplasia in the context of MDS or chronic myelomonocytic leukemia. Ne-WX and MCV are CPD derived from leukocytes and red blood cells, therefore the MDS-CBC score does not include any platelet-derived CPD. We asked whether this score could be improved by adding the immature platelet fraction (IPF), a CPD used as a surrogate marker of dysplastic thrombopoiesis. METHODS: Here, we studied a cohort of more than 500 individuals with cytopenias, including 168 MDS patients. In a first step, we used Breiman's random forests algorithm, a machine-learning approach, to identify the most relevant parameters for MDS prediction. We then designed Classification And Regression Trees (CART) to evaluate, using resampling, the effect of model tuning parameters on performance and choose the "optimal" model across these parameters. RESULTS: Using random forests algorithm, we identified Ne-WX and IPF as the strongest discriminatory predictors, explaining 37 and 33% of diagnoses respectively. To obtain "simplified" trees, which could be easily implemented into laboratory middlewares, we designed CART combining MDS-CBC score and IPF. Optimal results were obtained using a MDS-CBC score threshold equal to 0.23, and an IPF threshold equal to 3%. CONCLUSIONS: We propose an extended MDS-CBC score, including CPD from the three myeloid lineages, to improve MDS diagnosis on routine laboratory CBCs and optimize smear reviews.


Asunto(s)
Anemia , Hematología , Síndromes Mielodisplásicos , Trombocitopenia , Anciano , Recuento de Células Sanguíneas , Plaquetas , Humanos , Aprendizaje Automático , Síndromes Mielodisplásicos/diagnóstico
3.
Diagnostics (Basel) ; 12(7)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35885462

RESUMEN

Myelodysplastic syndromes (MDSs) are clonal hematopoietic diseases of the elderly, characterized by chronic cytopenia, ineffective and dysplastic hematopoiesis, recurrent genetic abnormalities and increased risk of progression to acute myeloid leukemia. Diagnosis on a complete blood count (CBC) can be challenging due to numerous other non-neoplastic causes of cytopenias. New generations of hematology analyzers provide cell population data (CPD) that can be exploited to reliably detect MDSs from a routine CBC. In this review, we first describe the different technologies used to obtain CPD. We then give an overview of the currently available data regarding the performance of CPD for each lineage in the diagnostic workup of MDSs. Adequate exploitation of CPD can yield very strong diagnostic performances allowing for faster diagnosis and reduction of time-consuming slide reviews in the hematology laboratory.

4.
Cell Mol Life Sci ; 79(7): 365, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35708858

RESUMEN

SARS-CoV-2, although not being a circulatory virus, spread from the respiratory tract resulting in multiorgan failures and thrombotic complications, the hallmarks of fatal COVID-19. A convergent contributor could be platelets that beyond hemostatic functions can carry infectious viruses. Here, we profiled 52 patients with severe COVID-19 and demonstrated that circulating platelets of 19 out 20 non-survivor patients contain SARS-CoV-2 in robust correlation with fatal outcome. Platelets containing SARS-CoV-2 might originate from bone marrow and lung megakaryocytes (MKs), the platelet precursors, which were found infected by SARS-CoV-2 in COVID-19 autopsies. Accordingly, MKs undergoing shortened differentiation and expressing anti-viral IFITM1 and IFITM3 RNA as a sign of viral sensing were enriched in the circulation of deadly COVID-19. Infected MKs reach the lung concomitant with a specific MK-related cytokine storm rich in VEGF, PDGF and inflammatory molecules, anticipating fatal outcome. Lung macrophages capture SARS-CoV-2-containing platelets in vivo. The virus contained by platelets is infectious as capture of platelets carrying SARS-CoV-2 propagates infection to macrophages in vitro, in a process blocked by an anti-GPIIbIIIa drug. Altogether, platelets containing infectious SARS-CoV-2  alter COVID-19 pathogenesis and provide a powerful fatality marker. Clinical targeting of platelets might prevent viral spread, thrombus formation and exacerbated inflammation at once and increase survival in COVID-19.


Asunto(s)
COVID-19 , Trombosis , Plaquetas , Humanos , Pulmón , Megacariocitos , Proteínas de la Membrana , Proteínas de Unión al ARN , SARS-CoV-2
5.
Front Med (Lausanne) ; 8: 615984, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33708778

RESUMEN

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a poorly understood disease involving a high inflammatory status. Neutrophil extracellular traps (NETs) have been described as a new pathway to contain infectious diseases but can also participate in the imbalance of the inflammatory and the coagulation systems. NETs could be a therapeutic target in COVID-19 patients. Methods: Consecutive patients with SARS-CoV2 related pneumonia admitted to the intensive care unit were included in a prospective bicentric study. Neutrophil extracellular trap concentrations were quantified in whole blood samples at day-1 and day-3 by flow cytometry. The primary outcome was the association between the blood NET quantification at ICU admission and the number of days with refractory hypoxemia defined by a PaO2/FIO2 ratio ≤100 mmHg. Results: Among 181 patients admitted to the ICUs for acute respiratory failure related to SARS-CoV2 pneumonia, 58 were included in the analysis. Patients were 62 [54, 69] years old in median, mostly male (75.9%). The median number of days with severe hypoxemia was 4 [2, 6] days and day-28 mortality was 27.6% (n = 16). The blood level of NETs significantly decreased between day-1 and day-3 in patients who survived (59.5 [30.5, 116.6] to 47 [33.2, 62.4] p = 0.006; 8.6 [3.4, 18.0] to 4 [1.4, 10.7] p = 0.001 and 7.4 [4.0, 16.7] to 2.6 [1.0, 8.3] p = 0.001 for MPO+, Cit-H3+, and MPO+ Cit-H3+ NETs, respectively) while it remained stable in patients who died (38.4 [26.0, 54.8] to 44.5 [36.4, 77.7] p = 0.542; 4.9 [1.3, 13.0] to 5.5 [2.8, 6.9] p = 0.839 and 4 [1.3, 13.6] to 2.7 [1.4, 4.5] p = 0.421 for MPO+, Cit-H3+, and MPO+ Cit-H3+ NETs, respectively). In multivariable negative binomial regression, the blood level of MPO+ NETs was negatively associated with the number of days with severe hypoxemia within 7 days (0.84 [0.73, 0.97]), while neither Cit-H3+ NETs nor double-positive NETs were significantly associated with the primary outcome. Conclusion: The whole blood level of NETs at day-1 was negatively associated with the number of days with severe hypoxemia in patients admitted to the intensive care unit for SARS-CoV2 related pneumonia. The lack of decrease of the blood level of NETs between day-1 and day-3 discriminated patients who died within day-28.

7.
Front Immunol ; 12: 781923, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35222352

RESUMEN

Immunological non-responders (InRs) are HIV-infected individuals in whom the administration of combination antiretroviral therapy (cART), although successful in suppressing viral replication, cannot properly reconstitute patient circulating CD4+ T-cell number to immunocompetent levels. The causes for this immunological failure remain elusive, and no therapeutic strategy is available to restore a proper CD4+ T-cell immune response in these individuals. We have recently demonstrated that platelets harboring infectious HIV are a hallmark of InR, and we now report on a causal connection between HIV-containing platelets and T-cell dysfunctions. We show here that in vivo, platelet-T-cell conjugates are more frequent among CD4+ T cells in InRs displaying HIV-containing platelets (<350 CD4+ T cells/µl blood for >1 year) as compared with healthy donors or immunological responders (IRs; >350 CD4+ T cells/µl). This contact between platelet containing HIV and T cell in the conjugates is not infectious for CD4+ T cells, as coculture of platelets from InRs containing HIV with healthy donor CD4+ T cells fails to propagate infection to CD4+ T cells. In contrast, when macrophages are the target of platelets containing HIV from InRs, macrophages become infected. Differential transcriptomic analyses comparing InR and IR CD4+ T cells reveal an upregulation of genes involved in both aerobic and anaerobic glycolysis in CD4+ T cells from InR vs. IR individuals. Accordingly, InR platelets containing HIV induce a dysfunctional increase in glycolysis-mediated energy production in CD4+ T cells as compared with T cells cocultured with IR platelets devoid of virus. In contrast, macrophage metabolism is not affected by platelet contact. Altogether, this brief report demonstrates a direct causal link between presence of HIV in platelets and T-cell dysfunctions typical of InR, contributing to devise a platelet-targeted therapy for improving immune reconstitution in these individuals.


Asunto(s)
Plaquetas , Infecciones por VIH , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos , Glucólisis , Humanos
9.
Int J Lab Hematol ; 41(6): 782-790, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31647610

RESUMEN

INTRODUCTION: Monocytosis is a frequent trigger for blood smear review in a routine hematology laboratory whereas chronic myelomonocytic leukemia (CMML) is infrequent and arises mostly in elderly patients. In order to define the best workflow for monocytosis, we studied three diagnostic approaches: the classical morphology approach (blood smear review), the flow cytometry assay (quantification of monocyte subsets as described by Selimoglu-Buet et al in 2015), and the "mono-dysplasia-score" also referred to as "Monoscore (as described by our team in 2018 using the structural parameters of the Sysmex XN™ analyzers). METHODS: Studying a multicentric cohort of 196 nonclonal monocytoses and CMML patients aged over 50 years, we compared the diagnostic performance of the three approaches alone and in combination to propose a diagnostic decision tree. RESULTS: In patients presenting with additional criteria for slide review to monocytosis (37% of our cohort), we propose to sequentially combine morphology, Monoscore, and flow cytometry. On the contrary, for patients with isolated monocytosis (63%), slide review is not mandatory and we suggest performing flow cytometry depending on the Monoscore value. Using the proposed algorithm, 98% of CMML patients would have been correctly identified, slide review rate drastically reduced, and flow cytometry would have been carried out in 44% of patients. CONCLUSION: We have shown that implementation of Monoscore is a useful input filter to significantly reduce slide reviews without losing sensitivity and that flow cytometry is a performant technique in the second step of the diagnostic workup of CMML.


Asunto(s)
Citometría de Flujo/métodos , Leucemia Mielomonocítica Crónica/diagnóstico , Flujo de Trabajo , Anciano , Anciano de 80 o más Años , Algoritmos , Árboles de Decisión , Humanos , Leucocitosis , Persona de Mediana Edad , Monocitos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...