Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.998
Filtrar
1.
Front Cardiovasc Med ; 11: 1395257, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725836

RESUMEN

Introduction: Mechanical stress and strain conditions play an important role in atherosclerosis plaque progression, remodeling and potential rupture and may be used in plaque vulnerability assessment for better clinical diagnosis and treatment decisions. Single layer plaque models without residual stress have been widely used due to unavailability of multi-layer image segmentation method and residual stress data. However, vessel layered structure and residual stress have large impact on stress/strain calculations and should be included in the models. Methods: In this study, intravascular optical coherence tomography (OCT) data of coronary plaques from 10 patients were acquired and segmented to obtain the three-layer vessel structure using an in-house automatic segmentation algorithm. Multi- and single-layer 3D thin-slice biomechanical plaque models with and without residual stress were constructed to assess the impact of residual stress on stress/strain calculations. Results: Our results showed that residual stress led to a more uniform stress distribution across the vessel wall, with considerable plaque stress/strain decrease on inner wall and increase on vessel out-wall. Multi-layer model with residual stress inclusion reduced inner wall maximum and mean plaque stresses by 38.57% and 59.70%, and increased out-wall maximum and mean plaque stresses by 572.84% and 432.03%. Conclusion: These findings demonstrated the importance of multi-layer modeling with residual stress for more accurate plaque stress/strain calculations, which will have great impact in plaque cap stress calculation and plaque rupture risk assessment. Further large-scale studies are needed to validate our findings.

2.
Immun Ageing ; 21(1): 29, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730291

RESUMEN

BACKGROUND: Quercetin is a flavonol compound widely distributed in plants that possesses diverse biological properties, including antioxidative, anti-inflammatory, anticancer, neuroprotective and senescent cell-clearing activities. It has been shown to effectively alleviate neurodegenerative diseases and enhance cognitive functions in various models. The immune system has been implicated in the regulation of brain function and cognitive abilities. However, it remains unclear whether quercetin enhances cognitive functions by interacting with the immune system. RESULTS: In this study, middle-aged female mice were administered quercetin via tail vein injection. Quercetin increased the proportion of NK cells, without affecting T or B cells, and improved cognitive performance. Depletion of NK cells significantly reduces cognitive ability in mice. RNA-seq analysis revealed that quercetin modulated the RNA profile of hippocampal tissues in aging animals towards a more youthful state. In vitro, quercetin significantly inhibited the differentiation of Lin-CD117+ hematopoietic stem cells into NK cells. Furthermore, quercetin promoted the proportion and maturation of NK cells by binding to the MYH9 protein. CONCLUSIONS: In summary, our findings suggest that quercetin promotes the proportion and maturation of NK cells by binding to the MYH9 protein, thereby improving cognitive performance in middle-aged mice.

3.
Front Pharmacol ; 15: 1341039, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711992

RESUMEN

Background: Gastric cancer (GC) is one of the major malignancies threatening human lives and health. Non-SMC condensin II complex subunit D3 (NCAPD3) plays a crucial role in the occurrence of many diseases. However, its role in GC remains unexplored. Materials and Methods: The Cancer Genome Atlas (TCGA) database, clinical samples, and cell lines were used to analyze NCAPD3 expression in GC. NCAPD3 was overexpressed and inhibited by lentiviral vectors and the CRISPR/Cas9 system, respectively. The biological functions of NCAPD3 were investigated in vitro and in vivo. Gene microarray, Gene set enrichment analysis (GSEA) and ingenuity pathway analysis (IPA) were performed to establish the potential mechanisms. Results: NCAPD3 was highly expressed in GC and was associated with a poor prognosis. NCAPD3 upregulation significantly promoted the malignant biological behaviors of gastric cancer cell, while NCAPD3 inhibition exerted a opposite effect. NCAPD3 loss can directly inhibit CCND1 and ESR1 expression to downregulate the expression of downstream targets CDK6 and IRS1 and inhibit the proliferation of gastric cancer cells. Moreover, NCAPD3 loss activates IRF7 and DDIT3 to regulate apoptosis in gastric cancer cells. Conclusion: Our study revealed that NCAPD3 silencing attenuates malignant phenotypes of GC and that it is a potential target for GC treatment.

4.
Infect Agent Cancer ; 19(1): 21, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693556

RESUMEN

AIMS: This study compared the prevalences of metabolic syndrome and of cardiac or kidney comorbidities among patients with hepatocellular carcinoma (HCC) associated with metabolic dysfunction-related fatty liver disease (MAFLD), chronic infection with hepatitis B or C virus (HBV or HCV), or the combination of MAFLD and chronic HBV infection. METHODS: Medical records were retrospectively analyzed for patients with HCC who underwent hepatectomy between March 2013 and March 2023. Patients with HCC of different etiologies were compared in terms of their clinicodemographic characteristics and laboratory data before surgery. RESULTS: Of the 2422 patients, 1,822 (75.2%) were chronically infected with HBV without MAFLD and HCV, 415 (17.2%) had concurrent MAFLD and chronic HBV infection but no HCV infection, 121 (5.0%) had MAFLD without hepatitis virus infection, and 64 (2.6%) were chronically infected with HCV in the presence or absence of MAFLD and HBV infection. Compared to patients chronically infected with HBV without MAFLD and HCV, those with MAFLD but no hepatitis virus infection showed significantly lower prevalence of cirrhosis, ascites, portal hypertension, alpha-fetoprotein concentration ≥ 400 ng/mL, tumor size > 5 cm, multinodular tumors and microvascular invasion. Conversely, they showed significantly higher prevalence of metabolic syndrome, hypertension, type 2 diabetes, abdominal obesity, history of cardiovascular disease, T-wave alterations, hypertriglyceridemia and hyperuricemia, as well as higher risk of arteriosclerotic cardiovascular disease. Compared to patients with MAFLD but no hepatitis virus infection, those with concurrent MAFLD and chronic infection with HBV showed significantly higher prevalence of cirrhosis, ascites and portal hypertension, but significantly lower prevalence of hypertension and history of cardiovascular disease. Compared to patients with other etiologies, those chronically infected with HCV in the presence or absence of MAFLD and HBV infection, showed significantly higher prevalence of cirrhosis, portal hypertension, ascites, and esophagogastric varices. CONCLUSION: Patients with HCC associated with MAFLD tend to have a background of less severe liver disease than those with HCC of other etiologies, but they may be more likely to suffer metabolic syndrome or comorbidities affecting the heart or kidneys.

5.
Front Oncol ; 14: 1391835, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38746671

RESUMEN

Background: Lung segmentectomy has gained much more attention as an important surgical method for treating early-stage lung cancer. However, incomplete fissures increase the difficulty of lung segmentectomy. The aim of this study was to analyze the safety and efficacy of the fissure-first approach in precision resection of lung segments for patients with incomplete fissures. Methods: The clinical data of patients with incomplete fissures who underwent lung segmentectomy were retrospectively analyzed. Date was divided into fissure-first approach in lung segmentectomy group (group A) and fissure-last approach in lung segmentectomy group (group B). The general linear data, operation times, intraoperative adverse events, postoperative recovery dates and complications were compared. Results: A total of 122 patients with complete clinical data were included. Patients in group B had more COPD (p < 0.05), and the lesions in group A were more closely related to the hilum of the lung (p < 0.05). Compared to Group B, Group A achieved better surgical outcomes, such as operation time, postoperative hospital stays, intraoperative bleeding, number of intrapulmonary lymph nodes sampled, counts of resected subsegments (except the upper lobe of the right lung), and rate of conversion to thoracotomy (all p < 0.05). Conclusion: The fissure-first approach is a safe and effective surgical approach in lung segmentectomy for patients with incomplete fissures. This approach can reduce the counts of resected subsegments and improve techniques in lung segmentectomy for patients with lung incomplete fissures.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38721707

RESUMEN

BACKGROUND: While it has been hypothesized that high plaque stress and strain may be related to plaque rupture, its direct verification using in vivo coronary plaque rupture data and full 3-dimensional fluid-structure interaction models is lacking in the current literature due to difficulty in obtaining in vivo plaque rupture imaging data from patients with acute coronary syndrome. This case-control study aims to use high-resolution optical coherence tomography-verified in vivo plaque rupture data and 3-dimensional fluid-structure interaction models to seek direct evidence for the high plaque stress/strain hypothesis. METHODS: In vivo coronary plaque optical coherence tomography data (5 ruptured plaques, 5 no-rupture plaques) were acquired from patients using a protocol approved by the local institutional review board with informed consent obtained. The ruptured caps were reconstructed to their prerupture morphology using neighboring plaque cap and vessel geometries. Optical coherence tomography-based 3-dimensional fluid-structure interaction models were constructed to obtain plaque stress, strain, and flow shear stress data for comparative analysis. The rank-sum test in the nonparametric test was used for statistical analysis. RESULTS: Our results showed that the average maximum cap stress and strain values of ruptured plaques were 142% (457.70 versus 189.22 kPa; P=0.0278) and 48% (0.2267 versus 0.1527 kPa; P=0.0476) higher than that for no-rupture plaques, respectively. The mean values of maximum flow shear stresses for ruptured and no-rupture plaques were 145.02 dyn/cm2 and 81.92 dyn/cm2 (P=0.1111), respectively. However, the flow shear stress difference was not statistically significant. CONCLUSIONS: This preliminary case-control study showed that the ruptured plaque group had higher mean maximum stress and strain values. Due to our small study size, larger scale studies are needed to further validate our findings.

7.
Brain Inj ; : 1-13, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716911

RESUMEN

BACKGROUND: Hyperlipidemia is a risk factor for stroke, and worsens neurological outcome after stroke. Endothelial progenitor cells (EPCs), which become dysfunctional in cerebral ischemia, hold capacity to promote revascularization. OBJECTIVE: We investigated the role of dyslipidemia in impairment of EPC-mediated angiogenesis in cerebral ischemic mice. METHODS AND RESULTS: The high fat diet (HFD)-fed mice following by ischemic stroke exhibited increased infarct volumes and neurological severity scores, and poorer angiogenesis. Bone marrow-EPCs treated with palmitic acid (PA) showed impaired functions and inhibited activity of AMP-activated protein kinase (AMPK). Notably, AMPK deficiency aggravated EPC dysfunction, further decreased mitochondrial membrane potential, and increased reactive oxygen species level in EPCs with PA treatment. Furthermore, the expression of fatty acid oxidation (FAO)-related genes was remarkably reduced, and carnitine palmitoyltransferase 1A (CPT1A) protein expression was downregulated in AMPK-deficient EPCs. AMPK deficiency aggravated neurological severity scores and angiogenesis in ischemic brain of HFD-fed mice, accompanied by suppressed protein level of CPT1A. EPC transplantation corrected impaired neurological severity scores and angiogenesis in AMPK-deficient mice. CONCLUSION: Our findings suggest that AMPK deficiency aggravates poor angiogenesis in ischemic brain by mediating FAO and oxidative stress thereby inducing EPC dysfunction in hyperlipidemic mice.

8.
Food Chem ; 451: 139454, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38703725

RESUMEN

Morphology regulation of heterodimer nanoparticles and the use of their asymmetric features for further practical applications are crucial because of the rich optical properties and various combinations of heterodimers. This work used silicon to asymmetrically wrap half of a gold sphere and grew gold branches on the bare gold surface to form heterogeneous nano pineapples (NPPs) which can effectively improve Surface-enhanced Raman scattering (SERS) properties through chemical enhancement and lightning-rod effect respectively. The asymmetric structures of NPPs enabled them to self-assemble into the monolayer membrane with consistent branch orientation. The prepared substrate had high homogeneity and better SERS ability than disorganized substrates, and achieved reliable detection of malachite green (MG) in clams with a detection limit of 7.8 × 10-11 M. This work provided a guide to further revise the morphology of heterodimers and a new idea for the use of asymmetric dimers for practically photochemical and biomedical sensing.

9.
Biosens Bioelectron ; 258: 116336, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38692222

RESUMEN

As pure antipodes may differ in biological interactions, pharmacology, and toxicity, discrimination of enantiomers is important in the pharmaceutical and agrochemical industries. Two major challenges in enantiomer determination are transducing and amplifying the distinct chiral-recognition signals. In this study, a light-sensitive organic photoelectrochemical transistor (OPECT) with homochiral character is developed for enantiomer discrimination. Demonstrated with the discrimination of glucose enantiomers, the photoelectrochemically active gate electrode is prepared by integrating Au nanoparticles (AuNPs) and a chiral Cu(II)-metal-organic framework (c-CuMOF) onto TiO2 nanotube arrays (TNT). The captured glucose enantiomers are oxidized to hydrogen peroxide (H2O2) by the oxidase-mimicking AuNPs-loaded c-CuMOF. Based on the confinement effect of the mesopocket structure of the c-CuMOF and the remarkable charge transfer ability of the 1D nanotubular architecture, variations in H2O2 yield are translated into significant changes in OPECT drain currents (ID) by inducing a catalytic precipitation reaction. Variations in ID confer a sensitive discrimination of glucose enantiomers with a limit of detection (LOD) of 0.07 µM for L-Glu and 0.05 µM for D-Glu. This enantiomer-driven gate electrode response strategy not only provides a new route for enantiomer identification, but also helps to understand the origin of the high stereoselectivity in living systems.

10.
Clin Cosmet Investig Dermatol ; 17: 843-846, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628635

RESUMEN

Pityriasis rosea (PR) is a common inflammatory, erythematous and scaly skin condition that usually affects individuals aged from 20 to 40 years old. The disease often exhibits a self-limiting course up to 6-8 weeks. We report a 25-year-old female patient with a six-month history of red scaly rashes on the trunk and proximal limbs, accompanied by severe pruritus that has been remained ineffective conventional treatments. She was diagnosed as persistent pityriasis rosea. As abrocitinib has been proved to be effective for many inflammatory diseases, therefore in this case, we tried abrocitinib for the patient, and a good result had been achieved.

11.
Nat Protoc ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654135

RESUMEN

Solar-driven photocatalytic reactions offer a promising route to clean and sustainable energy, and the spatial separation of photogenerated charges on the photocatalyst surface is the key to determining photocatalytic efficiency. However, probing the charge-separation properties of photocatalysts is a formidable challenge because of the spatially heterogeneous microstructures, complicated charge-separation mechanisms and lack of sensitivity for detecting the low density of separated photogenerated charges. Recently, we developed surface photovoltage microscopy (SPVM) with high spatial and energy resolution that enables the direct mapping of surface-charge distributions and quantitative assessment of the charge-separation properties of photocatalysts at the nanoscale, potentially providing unprecedented insights into photocatalytic charge-separation processes. Here, this protocol presents detailed procedures that enable researchers to construct the SPVM instruments by integrating Kelvin probe force microscopy with an illumination system and the modulated surface photovoltage (SPV) approach. It then describes in detail how to perform SPVM measurements on actual photocatalyst particles, including sample preparation, tuning of the microscope, adjustment of the illuminated light path, acquisition of SPVM images and measurements of spatially resolved modulated SPV signals. Moreover, the protocol also includes sophisticated data analysis that can guide non-experts in understanding the microscopic charge-separation mechanisms. The measurements are ordinarily performed on photocatalysts with a conducting substrate in gases or vacuum and can be completed in 15 h.

12.
Sci Data ; 11(1): 372, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605057

RESUMEN

Natural language processing techniques enable extraction of valuable information from large amounts of published literature for the application of data science and technology, i.e. machine learning in the field of materials science. Nevertheless, the automated extraction of data from full-text documents remains a complex task. We propose a document-level natural language processing pipeline for literature extraction of comprehensive information on layered cathode materials for sodium-ion batteries. The pipeline enhances entity recognition with contextual supplementary information while capturing the article structure. Finally, a heuristic multi-level relationship extraction algorithm is employed in relation extraction to extract experimental parameters and complex performance relationships respectively. We successfully extracted a comprehensive dataset containing 5265 records from 1747 documents, encompassing essential information such as chemical composition, synthesis parameters, and electrochemical properties. By implementing our pipeline, we have made significant progress in overcoming the challenges associated with data scarcity in battery informatics. The extracted datasets provide a valuable resource for further research and development in the field of layered cathode materials.

13.
Cell Death Discov ; 10(1): 174, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605077

RESUMEN

The dysregulation of Hippo signaling is a crucial factor driving the progression of gastric cancer, making the targeting of the Hippo pathway a promising therapeutic strategy. However, effective drugs targeting the Hippo/YAP axis remain unavailable. Thus, identifying potential therapeutic targets and mechanisms that inhibit the activity of the Hippo/YAP axis in gastric cancer is of paramount importance. The ubiquitination modification of the Hippo/YAP pathway plays a significant role in signaling transduction and cancer progression. In an effort to shed light on effective therapeutic targets, we conducted a screening using a deubiquitinase small interfering RNA library, leading to the identification of USP12 as an important deubiquitinase in the context of Hippo/YAP axis and the progression of gastric cancer. Our bioinformatic analysis further demonstrated a correlation between USP12 and poor survival, as well as a positive association with classical YAP target genes in gastric cancer samples. Notably, USP12 depletion was found to inhibit gastric cancer progression via the Hippo/YAP axis, whereas USP12 overexpression exhibited the opposite effect, promoting gastric cancer growth and enhancing YAP activity. Further studies through immuno-staining and immuno-precipitation assays indicated the nuclear localization of USP12 and its association with YAP to enhance YAP stability. Specifically, our findings revealed that USP12 could inhibit K48-linked poly-ubiquitination of YAP, predominantly at the K315 site. As a result, we have identified a novel regulatory mechanism involving USP12 and Hippo signaling in the progression of gastric cancer, with the potential for blockade of USP12 to materialize as a promising strategy for combating gastric cancer.

14.
Prev Med Rep ; 42: 102724, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38681061

RESUMEN

Purpose: This umbrella review summarized the factors influencing parents' hesitancy to vaccinate their children against COVID-19 and the evidence to reduce it. Methods: The analysis included PubMed, Embase, Cochrane Library, Web of Science, and Scopus articles published before March 22, 2024. It considered all meta-analyses that investigated parental COVID-19 vaccine hesitancy. Results: Eight studies were included. Hesitancy rate of parents from five continents to vaccinate their children against COVID-19 was between 0.69 % and 95.0 %. The comprehensive synthesis in this review shows that the influencing factors originate from four aspects: Parents' attitudes, including their trust in the scientific community, concerns about COVID-19 complications, perceptions of children's susceptibility, and support from the social environment, including government incentives, low vaccination costs, and specific sociodemographic characteristics, were positive factors that reduced parental vaccine hesitancy in children. Conversely, negative aspects, including vaccine distrust, the spread of misinformation, poor economic status, and concern about unprecedentedly short development time, were associated with increased hesitancy. Conclusion: Our study identified positive and negative factors for parental COVID-19 vaccine hesitancy in children and highlighted that parental attitude was the most important determinant.

15.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612595

RESUMEN

Integrated rice-fish farming has emerged as a novel agricultural production pattern to address global food security challenges. Aiming to determine the optimal, scientifically sound, and sustainable stocking density of red claw crayfish (Cherax quadricarinatus) in an integrated rice-crayfish farming system, we employed Illumina high-throughput 16S rRNA gene sequencing to evaluate the impact of different stocking densities of red claw crayfish on the composition, diversity, function, and co-occurrence network patterns of soil bacterial communities. The high stocking density of red claw crayfish reduced the diversity and evenness of the soil bacterial community during the mid-culture stage. Proteobacteria, Actinobacteria, and Chloroflexi emerged as the most prevalent phyla throughout the experimental period. Low stocking densities initially boosted the relative abundance of Actinobacteria in the paddy soil, while high densities did so during the middle and final stages. There were 90 distinct functional groups identified across all the paddy soil samples, with chemoheterotrophy and aerobic chemoheterotrophy being the most abundant. Low stocking densities initially favored these functional groups, whereas high densities enhanced their relative abundances in the later stages of cultivation. Medium stocking density of red claw crayfish led to a more complex bacterial community during the mid- and final culture stages. The experimental period showed significant correlations with soil bacterial communities, with total nitrogen (TN) and total phosphorus (TP) concentrations emerging as primary factors contributing to the alterations in soil bacterial communities. In summary, our findings demonstrated that integrated rice-crayfish farming significantly impacted the soil microbiomes and environmental factors at varying stocking densities. Our study contributed to theoretical insights into the profound impact of integrated rice-crayfish farming with various stocking densities on bacterial communities in paddy soils.


Asunto(s)
Actinobacteria , Microbiota , Oryza , Animales , Suelo , Astacoidea , ARN Ribosómico 16S/genética , Agricultura , Actinobacteria/genética
16.
Talanta ; 275: 126131, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38663064

RESUMEN

The development of an ultra-sensitive detection method for carbohydrate antigen 19-9 (CA19-9) is very important for the early diagnosis of pancreatic cancer. In this work, we developed a new strategy to achieve a variety of Au-Ag hybrid nanoparticles from janus to core-satellite which is controlled by the volume of AgNO3 and the concentration of benzimidazolecarboxylic acid (MBIA). With the volume of AgNO3 increased, Au-Ag hybrid nanoparticles changed from janus to core-satellite and the characteristic absorption peak showed two opposite trends. The size and number of Ag islands were determined by the concentration of MBIA. Au-Ag core-satellites nanoparticles with a large number of small-sized Ag have the highest SERS intensity. Then we used them as SERS nanotags and Au-Polystyrene nanospheres modified by captured anti-CA19-9 antibody as solid substrates to realize the ultra-sensitive detection of CA19-9 with a low limit of detection of 1.25 × 10-6 IU/mL and a wide linear range of 1.00 × 10-5 -1.00 × 104 IU/mL. This work not only demonstrates that MBIA and AgNO3 were the key factors in the growth of Au-Ag hybrid nanoparticles from 2D to 3D structure but also supplies an ultra-sensitive detection method for CA19-9 which has a potential practicability in the clinical early diagnoses of pancreatic cancer.

17.
Comput Struct Biotechnol J ; 24: 247-257, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38617891

RESUMEN

Objectives: Combination therapy of lenvatinib and immune checkpoint inhibitors (CLICI) has emerged as a promising approach for managing unresectable hepatocellular carcinoma (HCC). However, the response to such treatment is observed in only a subset of patients, underscoring the pressing need for reliable methods to identify potential responders. Materials & methods: This was a retrospective analysis involving 120 patients with unresectable HCC. They were divided into training (n = 72) and validation (n = 48) cohorts. We developed an interpretable deep learning model using multiphase computed tomography (CT) images to predict whether patients will respond or not to CLICI treatment, based on the Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST v1.1). We evaluated the models' performance and analyzed the impact of each CT phase. Critical regions influencing predictions were identified and visualized through heatmaps. Results: The multiphase model outperformed the best biphase and uniphase models, achieving an area under the curve (AUC) of 0.802 (95% CI = 0.780-0.824). The portal phase images were found to significantly enhance the model's predictive accuracy. Heatmaps identified six critical features influencing treatment response, offering valuable insights to clinicians. Additionally, we have made this model accessible via a web server at http://uhccnet.com/ for ease of use. Conclusions: The integration of multiphase CT images with deep learning-generated heatmaps for predicting treatment response provides a robust and practical tool for guiding CLICI therapy in patients with unresectable HCC.

18.
Natl Sci Rev ; 11(4): nwae074, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38623452

RESUMEN

Tropospheric reactive bromine is important for atmospheric chemistry, regional air pollution, and global climate. Previous studies have reported measurements of atmospheric reactive bromine species in different environments, and proposed their main sources, e.g. sea-salt aerosol (SSA), oceanic biogenic activity, polar snow/ice, and volcanoes. Typhoons and other strong cyclonic activities (e.g. hurricanes) induce abrupt changes in different earth system processes, causing widespread destructive effects. However, the role of typhoons in regulating reactive bromine abundance and sources remains unexplored. Here, we report field observations of bromine oxide (BrO), a critical indicator of reactive bromine, on the Huaniao Island (HNI) in the East China Sea in July 2018. We observed high levels of BrO below 500 m with a daytime average of 9.7 ± 4.2 pptv and a peak value of ∼26 pptv under the influence of a typhoon. Our field measurements, supported by model simulations, suggest that the typhoon-induced drastic increase in wind speed amplifies the emission of SSA, significantly enhancing the activation of reactive bromine from SSA debromination. We also detected enhanced BrO mixing ratios under high NOx conditions (ppbv level) suggesting a potential pollution-induced mechanism of bromine release from SSA. Such elevated levels of atmospheric bromine noticeably increase ozone destruction by as much as ∼40% across the East China Sea. Considering the high frequency of cyclonic activity in the northern hemisphere, reactive bromine chemistry is expected to play a more important role than previously thought in affecting coastal air quality and atmospheric oxidation capacity. We suggest that models need to consider the hitherto overlooked typhoon- and pollution-mediated increase in reactive bromine levels when assessing the synergic effects of cyclonic activities on the earth system.

19.
Adv Sci (Weinh) ; : e2400898, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647422

RESUMEN

Fabrication of versatile hydrogels in a facile and effective manner represents a pivotal challenge in the field of biomaterials. Herein, a novel strategy is presented for preparing on-demand degradable hydrogels with multilevel responsiveness. By employing selenol-dichlorotetrazine nucleophilic aromatic substitution (SNAr) to synthesize hydrogels under mild conditions in a buffer solution, the necessity of additives or posttreatments can be obviated. The nucleophilic and redox reactions between selenol and tetrazine culminate in the formation of three degradable chemical bonds-diselenide, aryl selenide, and dearomatized selenide-in a single, expeditious step. The resultant hydrogel manifests exceptional adaptability to intricate environments in conjunction with self-healing and on-demand degradation properties. Furthermore, the resulting material demonstrated light-triggered antibacterial activity. Animal studies further underscore the potential of integrating metformin into Se-Tz hydrogels under green light irradiation, as it effectively stimulates angiogenesis and collagen deposition, thereby fostering efficient wound healing. In comparison to previously documented hydrogels, Se-Tz hydrogels exhibit controlled degradation and drug release, outstanding antibacterial activity, mechanical robustness, and bioactivity, all without the need for costly and intricate preparation procedures. These findings underscore Se-Tz hydrogels as a safe and effective therapeutic option for diabetic wound dressings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...