Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1396666, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803600

RESUMEN

Low temperature and cold damage seriously hinder the growth, development, and morphogenesis of cotton seedlings. However, the response mechanism of cotton seedlings under cold stress still lacks research. In this study, transcriptome sequencing, gas exchange parameters, and rapid chlorophyll fluorescence parameters were analyzed in leaves of cold-tolerant upland cotton variety "ZM36" under different temperature stress [25°C (T25, CK), 15°C (T15), 10°C (T10), and 4°C (T4)]. The results showed that the net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), PSII potential maximum photochemical efficiency (Fv/Fm), and performance index (PIabs) of cotton leaves significantly decreased, and the intercellular CO2 concentration (Ci) and Fo/Fm significantly increased under cold stress. The transcriptome sequencing analysis showed that a total of 13,183 DEGs were involved in the response of cotton seedlings at each temperature point (T25, T15, T10, and T4), mainly involving five metabolic pathways-the phosphatidylinositol signaling system, photosynthesis, photosynthesis antenna protein, carbon fixation in photosynthetic organisms, and carotenoid synthesis. The 1,119 transcription factors were discovered among all the DEGs. These transcription factors involve 59 families, of which 15.8% of genes in the NAC family are upregulated. Through network regulatory analysis, the five candidate genes GhUVR8 (GH_A05G3668), GhPLATZ (GH_A09G2161), GhFAD4-1 (GH_A01G0758), GhNFYA1 (GH_A02G1336), and GhFAD4-2 (GH_D01G0766) were identified in response to cold stress. Furthermore, suppressing the expression level of GhPLATZ by virus-induced gene silencing led to the reduction of low temperature resistance, implying GhPLATZ as a positive regulator of low temperature tolerance. The findings of the study revealed a piece of the complex response mechanism of the cold-tolerant variety "ZM36" to different cold stresses and excavated key candidate genes for low temperature response, which provided support for accelerating the selection and breeding of cotton varieties with low temperature tolerance.

2.
Genes (Basel) ; 15(3)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38540407

RESUMEN

Chromatin remodelers are essential for regulating plant growth, development, and responses to environmental stresses. HIT4 (HEAT-INTOLERANT 4) is a novel stress-induced chromatin remodeling factor that has been less studied in abiotic stress and stress resistance, particularly in cotton. In this study, we conducted a comprehensive analysis of the members of the HIT4 gene family in Gossypium hirsutum using bioinformatics methods, including phylogenetic relationships, gene organization, transcription profiles, phylogenetic connections, selection pressure, and stress response. A total of 18 HIT4 genes were identified in four cotton species, with six HIT4 gene members in upland cotton. Based on the evolutionary relationships shown in the phylogenetic tree, the 18 HIT4 protein sequences were classified into four distinct subgroups. Furthermore, we conducted chromosome mapping to determine the genomic locations of these genes and visually represented the structural characteristics of HIT4 in G. hirsutum. In addition, we predicted the regulatory elements in HIT4 in G. hirsutum and conducted an analysis of repetitive sequences and gene collinearity among HIT4 in four cotton species. Moreover, we calculated the Ka/Ks ratio for homologous genes to assess the selection pressure acting on HIT4. Using RNA-seq, we explored the expression patterns of HIT4 genes in G. hirsutum and Gossypium barbadense. Through weighted gene co-expression network analysis (WGCNA), we found that GHHIT4_4 belonged to the MEblue module, which was mainly enriched in pathways such as DNA replication, phagosome, pentose and glucuronate interconversions, steroid biosynthesis, and starch and sucrose metabolism. This module may regulate the mechanism of upland cotton resistance to Verticillium wilt through DNA replication, phagosome, and various metabolic pathways. In addition, we performed heterologous overexpression of GH_D11G0591 (GHHIT4_4) in tobacco, and the results showed a significant reduction in disease index compared to the wild type, with higher expression levels of disease resistance genes in the transgenic tobacco. After conducting a VIGS (virus-induced gene silencing) experiment in cotton, the results indicated that silencing GHHIT4_4 had a significant impact, the resistance to Verticillium wilt weakened, and the internode length of the plants significantly decreased by 30.7% while the number of true leaves increased by 41.5%. qRT-PCR analysis indicated that GHHIT4_4 mainly enhanced cotton resistance to Verticillium wilt by indirectly regulating the PAL, 4CL, and CHI genes. The subcellular localization results revealed that GHHIT4_4 was predominantly distributed in the mitochondria and nucleus. This study offers preliminary evidence for the involvement of the GHHIT4_4 in cotton resistance to Verticillium wilt and lays the foundation for further research on the disease resistance mechanism of this gene in cotton.


Asunto(s)
Gossypium , Verticillium , Gossypium/metabolismo , Verticillium/genética , Filogenia , Resistencia a la Enfermedad/genética , Mapeo Cromosómico
3.
Front Plant Sci ; 14: 1203695, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332701

RESUMEN

WRKY transcription factors (TFs) play an important role in regulating the mechanism of plant self-defense. However, the function of most WRKY TFs in upland cotton (Gossypium hirsutum) is still unknown. Hence, studying the molecular mechanism of WRKY TFs in the resistance of cotton to Verticillium dahliae is of great significance to enhancing cotton disease resistance and improving its fiber quality. In this study, Bioinformatics has been used to characterize the cotton WRKY53 gene family. we analyzed the GhWRKY53 expression patterns in different resistant upland cotton cultivars treated with salicylic acid (SA) and methyl jasmonate (MeJA). Additionally, GhWRKY53 was silenced using a virus-induced gene silencing (VIGS) to determine the contribution of GhWRKY53 to V. dahliae resistance in cotton. The result showed that GhWRKY53 mediated SA and MeJA signal transduction pathways. After VIGS of the GhWRKY53, the ability of cotton to resist V. dahliae decreased, indicating that the GhWRKY53 could be involved in the disease resistance mechanism of cotton. Studies on the levels of SA and jasmonic acid (JA) and their related pathway genes demonstrated that the silencing of GhWRKY53 inhibited the SA pathway and activated the JA pathway, thereby reducing the resistance of plants to V. dahliae. In conclusion, GhWRKY53 could change the tolerance of upland cotton to V. dahliae by regulating the expression of SA and JA pathway-related genes. However, the interaction mechanism between JA and SA signaling pathways in cotton in response to V. dahliae requires further study.

4.
Small Methods ; 6(4): e2200007, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35212472

RESUMEN

To obtain stable and planar molecular geometry in non-fused electron acceptors, A4T-25 and A4T-26 are designed and synthesized by introducing the bulk 2,4,6-triisopropylphenyl side groups onto different positions of the central two thiophene units. A4T-25 and A4T-26 both show a narrow-bandgap of 1.39 and 1.46 eV, with highest occupied molecular orbital/lowest unoccupied molecular orbital levels of -5.56/-3.81 and -5.65/-3.83 eV, respectively, and the electrostatic potential distributions imply that they have strong electron-accepting capability. The single crystal structure analysis and the transfer integral calculation demonstrate that the much more compact π-π stacking in A4T-26 can promote efficient charge transportation compared to that in A4T-25. Therefore, the electron mobility of A4T-26 is obviously higher and more balanced than that of A4T-25. When blending the two acceptors with the same polymer donor PBDB-TF, the photovoltaic cell based on PBDB-TF:A4T-25 has an inadequate power conversion efficiency (PCE) of 7.83%, while the PBDB-TF:A4T-26-based one yields an enhanced PCE of 12.1%. Overall, this study offers an insight into the relationship between the fine-tuning of the molecular structure of non-fused ring acceptors and the corresponding charge transfer process in organic solar cells.


Asunto(s)
Electrones , Tiofenos , Conformación Molecular , Estructura Molecular , Polímeros/química , Tiofenos/química
5.
Nat Commun ; 12(1): 5093, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429435

RESUMEN

Non-fullerene acceptors (NFAs) based on non-fused conjugated structures have more potential to realize low-cost organic photovoltaic (OPV) cells. However, their power conversion efficiencies (PCEs) are much lower than those of the fused-ring NFAs. Herein, a new bithiophene-based non-fused core (TT-Pi) featuring good planarity as well as large steric hindrance was designed, based on which a completely non-fused NFA, A4T-16, was developed. The single-crystal result of A4T-16 reveals that a three-dimensional interpenetrating network can be formed due to the compact π-π stacking between the adjacent end-capping groups. A high PCE of 15.2% is achieved based on PBDB-TF:A4T-16, which is the highest value for the cells based on the non-fused NFAs. Notably, the device retains ~84% of its initial PCE after 1300 h under the simulated AM 1.5 G illumination (100 mW cm-2). Overall, this work provides insight into molecule design of the non-fused NFAs from the aspect of molecular geometry control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...