Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833579

RESUMEN

The asymmetrical distribution of auxin supports high intensity blue light (HBL)-mediated phototropism. Flavonoids, secondary metabolites induced by blue light and TRANSPARENT TESTA GLABRA1 (TTG1), alter auxin transport. However, the role of TTG1 in HBL-induced phototropism in Arabidopsis (Arabidopsis thaliana) remains unclear. We found that TTG1 regulates HBL-mediated phototropism. HBL-induced degradation of CRYPTOCHROME 1 (CRY1) was repressed in ttg1-1, and depletion of CRY1 rescued the phototropic defects of the ttg1-1 mutant. Moreover, overexpression of CRY1 in a cry1 mutant background led to phototropic defects in response to HBL. These results indicated that CRY1 is involved in the regulation of TTG1-mediated phototropism in response to HBL. Further investigation showed that TTG1 physically interacts with CRY1 via its N-terminus and that the added TTG1 promotes the dimerization of CRY1. The interaction between TTG1 and CRY1 may promote HBL-mediated degradation of CRY1. TTG1 also physically interacted with blue light inhibitor of cryptochrome 1 (BIC1) and Light-Response Bric-a-Brack/Tramtrack/Broad 2 (LRB2), and these interactions either inhibited or promoted their interaction with CRY1. Exogenous gibberellins (GA) and auxins, two key plant hormones that crosstalk with CRY1, may confer the recovery of phototropic defects in the ttg1-1 mutant and CRY1-overexpressing plants. Our results revealed that TTG1 participates in the regulation of HBL-induced phototropism by modulating CRY1 levels, which are coordinated with GA or IAA signaling.

2.
Comput Intell Neurosci ; 2022: 2399796, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36419506

RESUMEN

Aiming at the 1vs1 confrontation problem in a complex environment where obstacles are randomly distributed, the DDPG (deep deterministic policy gradient) algorithm is used to design the maneuver decision-making method of UAVs. Traditional methods generally assume that all obstacles are known globally. In this paper, a UAV airborne lidar detection model is designed, which can effectively solve the problem of obstacle avoidance when facing a large number of unknown obstacles. On the basis of the designed model, the idea of transfer learning is used to transfer the strategy trained by one UAV in a simple task to a new similar task, and the strategy will be used to train the strategy of the other UAV. This method can improve the intelligence of the UAVs in both sides alternately and progressively. The simulation results show that the transfer learning method can speed up the training process and improve the training effect.


Asunto(s)
Algoritmos , Refuerzo en Psicología , Simulación por Computador
3.
J Fungi (Basel) ; 8(10)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36294621

RESUMEN

Serine/arginine (SR) proteins are essential pre-mRNA splicing factors in eukaryotic organisms. Our previous studies have shownthat the unique SR-specific protein kinase Srk1 is important for RNA splicing and gene transcription in Fusarium graminearum, and interacts with two SR proteins, FgSrp1 and FgSrp2. In this study, we have identified an SR-like protein called Sgh1 in F. graminearum, which is orthologous to budding yeast paralogous Gbp2 and Hrb1. Our data have shownthat the Sgh1 is involved in vegetative growth, conidiation, sexual reproduction, DON synthesis, and plant infection. Moreover, the Sgh1 is mainly localized to the nucleus. RNA-seq analysis has shownthat the expression of over 1100 genes and the splicing efficiency in over 300 introns were affected in the Δsgh1 mutant. Although the RS domain and all three of the RRM domains are important for the Sgh1 functions, only the RS domain is responsible for its nuclear localization. Finally, we verified that the Sgh1 interacts with the unique SR-specific kinase Srk1 in F. graminearum by the yeast-two hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. Taken together, our results have revealed that the Sgh1 regulates the fungal development, plant infection, and the pre-mRNA processing, and the RS domain regulates the function of the Sgh1 by modulating its nucleocytoplasmic shuttling.

4.
Int J Mol Sci ; 23(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36012372

RESUMEN

CK1 casein kinases are well conserved in filamentous fungi. However, their functions are not well characterized in plant pathogens. In Fusarium graminearum, deletion of FgYCK1 caused severe growth defects and loss of conidiation, fertility, and pathogenicity. Interestingly, the Fgyck1 mutant was not stable and often produced fast-growing spontaneous suppressors. Suppressor mutations were frequently identified in the FgBNI4 gene by sequencing analyses. Deletion of the entire FgBNI4 or disruptions of its conserved C-terminal region could suppress the defects of Fgyck1 in hyphal growth and conidiation, indicating the genetic relationship between FgYCK1 and FgBNI4. Furthermore, the Fgyck1 mutant showed defects in polarized growth, cell wall integrity, internalization of FgRho1 and vacuole fusion, which were all partially suppressed by deletion of FgBNI4. Overall, our results indicate a stage-specific functional relationship between FgYCK1 and FgBNI4, possibly via FgRho1 signaling for regulating polarized hyphal growth and cell wall integrity.


Asunto(s)
Proteínas Fúngicas , Fusarium , Pared Celular/genética , Proteínas Fúngicas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/genética , Virulencia
5.
Front Plant Sci ; 12: 704618, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646282

RESUMEN

Phototropins, namely, phototropin 1 (phot1) and phototropin 2 (phot2), mediate chloroplast movement to maximize photosynthetic efficiency and prevent photodamage in plants. Phot1 primarily functions in chloroplast accumulation process, whereas phot2 mediates both chloroplast avoidance and accumulation responses. The avoidance response of phot2-mediated chloroplasts under high-intensity blue light (HBL) limited the understanding of the function of phot1 in the chloroplast accumulation process at the HBL condition. In this study, we showed that the phot2 mutant exhibits a chloroplast accumulation response under HBL, which is defective when the root phototropism 2 (RPT2) gene is mutated in the phot2 background, mimicking the phenotype of the phot1 phot2 double mutant. A further analysis revealed that the expression of RPT2 was induced by HBL and the overexpression of RPT2 could partially enhance the chloroplast accumulation response under HBL. These results confirmed that RPT2 also participates in regulating the phot1-mediated chloroplast accumulation response under HBL. In contrast, RPT2 functions redundantly with neural retina leucine zipper (NRL) protein for chloroplast movement 1 (NCH1) under low-light irradiation. In addition, no chloroplast accumulation response was detected in the phot2 jac1 double mutant under HBL, which has been previously observed in phot2 rpt2 and phot1 phot2 double mutants. Taken together, our results indicated that phot1 mediates the HBL-induced chloroplast accumulation response in an RPT2-dependent manner and is also regulated by j-domain protein required for chloroplast accumulation response 1 (JAC1).

6.
J Exp Bot ; 72(18): 6365-6381, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34145440

RESUMEN

Hypocotyl phototropism is mediated by the phototropins and plays a critical role in seedling morphogenesis by optimizing growth orientation. However, the mechanisms by which phototropism influences morphogenesis require additional study, especially for polyploid crops such as cotton. Here, we found that hypocotyl phototropism was weaker in Gossypium arboreum than in G. raimondii (two diploid cotton species), and LC-MS analysis indicated that G. arboreum hypocotyls had a higher content of abscisic acid (ABA) and a lower content of indole-3-acetic acid (IAA) and bioactive gibberellins (GAs). Consistently, the expression of ABA2, AAO3, and GA2OX1 was higher in G. arboreum than in G. raimondii, and that of GA3OX was lower; these changes promoted ABA synthesis and the transformation of active GA to inactive GA. Higher concentrations of ABA inhibited the asymmetric distribution of IAA across the hypocotyl and blocked the phototropic curvature of G. raimondii. Application of IAA or GA3 to the shaded and illuminated sides of the hypocotyl enhanced and inhibited phototropic curvature, respectively, in G. arboreum. The application of IAA, but not GA, to one side of the hypocotyl caused hypocotyl curvature in the dark. These results indicate that the asymmetric distribution of IAA promotes phototropic growth, and the weakened phototropic curvature of G. arboreum may be attributed to its higher ABA concentrations that inhibit the action of auxin, which is regulated by GA signaling.


Asunto(s)
Hipocótilo , Fototropismo , Ácido Abscísico , Gossypium/genética , Ácidos Indolacéticos
7.
Plant Physiol Biochem ; 164: 289-298, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34023643

RESUMEN

Hypocotyl phototropism is redundantly mediated by phot1 and phot2, two blue light receptor phototropins, under the intensity of blue light>1 µmol m-2 s-1. As light intensity increases, phot1 inhibits the phot2-mediated response. To date, only Arabidopsis Root Phototropism2 (RPT2) has been shown to participate in phot1-mediated inhibition of phototropism. To dissect the signaling network that underlies phot1-mediated inhibition, we carried out a yeast two-hybrid (Y2H) screening assay for RPT2 interacting proteins and identified J-domain protein required for chloroplast accumulation response 1 (JAC1). The interaction between JAC1 and RPT2 was verified by bimolecular fluorescence complementation and Co-IP assays. JAC1 is expressed mainly in cotyledons and hypocotyls. Like RPT2, JAC1 can be induced by blue light, suggesting that it may function similarly to RPT2 in the inhibition of phototropism. Genetic analysis showed that jac1 mutation significantly enhanced the hypocotyl bending of phot1 mutants towards intermediate-intensity blue light, and this effect was inhibited by the constitutive expression of JAC1 in the phot1 jac1 mutant. The phot1 rpt2 double mutant also exhibited enhanced phototropism compared with the phot1 mutant. Taken together, our data clearly demonstrate that JAC1 cooperates with RPT2 to negatively regulate hypocotyl phototropism in plants and may act either downstream of or in parallel with phot1.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Auxilinas , Cloroplastos , Hipocótilo , Luz , Fosfoproteínas , Fototropismo
9.
J Integr Plant Biol ; 62(5): 614-630, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-30941890

RESUMEN

Both phototropins (phot1 and phot2) and cryptochromes (cry1 and cry2) were proven as the Arabidopsis thaliana blue light receptors. Phototropins predominately function in photomovement, and cryptochromes play a role in photomorphogenesis. Although cryptochromes have been proposed to serve as positive modulators of phototropic responses, the underlying mechanism remains unknown. Here, we report that depleting sucrose from the medium or adding gibberellic acids (GAs) can partially restore the defects in phototropic curvature of the phot1 phot2 double mutants under high-intensity blue light; this restoration does not occur in phot1 phot2 cry1 cry2 quadruple mutants and nph3 (nonphototropic hypocotyl 3) mutants which were impaired phototropic response in sucrose-containing medium. These results indicate that GAs and sucrose antagonistically regulate hypocotyl phototropism in a cryptochromes dependent manner, but it showed a crosstalk with phototropin signaling on NPH3. Furthermore, cryptochromes activation by blue light inhibit GAs synthesis, thus stabilizing DELLAs to block hypocotyl growth, which result in the higher GAs content in the shade side than the lit side of hypocotyl to support the asymmetric growth of hypocotyl. Through modulation of the abundance of DELLAs by sucrose depletion or added GAs, it revealed that cryptochromes have a function in mediating phototropic curvature.


Asunto(s)
Arabidopsis/metabolismo , Criptocromos/metabolismo , Hipocótilo/metabolismo , Hipocótilo/fisiología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Criptocromos/genética , Fototropinas/metabolismo , Fototropinas/fisiología , Fototropismo/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
10.
Org Biomol Chem ; 17(38): 8745-8748, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31532435

RESUMEN

Stable while reactive isatin-derived saturated esters have been utilized as 3-carbon synthons in a base-promoted formal [3 + 2] annulation with N-Boc imines. The developed protocol offers a direct pathway for the rapid and divergent construction of two classes of 3,3'-spirooxindole γ-butyrolactam skeletons that are recognized as the privileged structures of various bioactive compounds. This protocol also has the advantages of mild reaction conditions, scalability and wide reaction scope.

11.
Sci China Life Sci ; 62(3): 309-320, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28378154

RESUMEN

Pulmonary fibrosis, a progressive chronic disease with a high mortality rate, has limited treatment options. Currently, lung transplantation remains the only effective treatment. Here we report that a small RNA, HJT-sRNA-m7, from a Chinese herbal medicine Hong Jing Tian (HJT, RHODIOHAE CRENULATAE RADIX ET RHIZOMA, Rhodiola crenulata) can effectively reduce the expressions of fibrotic hallmark genes and proteins both in alveolar in vitro and in mouse lung tissues in vivo. We also discovered over one hundred oil-soluble chemicals from HJT decoctions, most of which are found in lipid extracts from other Chinese herbals decoctions, including Pu Gong Ying (PGY, TARAXACI HERBA, Taraxacum mongolicum), Chuan Xin Lian (CXL, changed to "ANDROGRAPHIS HERBA, Andrographis paniculata"), and Jin Yin Hua (JYH, lonicera japonica or Honeysuckle). We identified the active component in these decoctions as two forms of phosphocholines, PC (18:0/18:2) and PC (16:0/18:2). These PCs potentially could form liposomes with small RNAs to enter human alveolar and gastric cells. Our experimental results suggest an unprecendent lipid complex route through which botanic small RNA can enter human bodies. Our results provide an innovative treatment strategy for oral delivery of siRNAs as therapeutic medication.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Liposomas/química , Fosforilcolina/química , Raíces de Plantas/química , Fibrosis Pulmonar/genética , ARN de Planta/genética , ARN Interferente Pequeño/genética , Células A549 , Animales , Línea Celular Tumoral , Medicamentos Herbarios Chinos/química , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Fitoterapia/métodos , Fibrosis Pulmonar/metabolismo , ARN de Planta/química , ARN Interferente Pequeño/química , Rizoma/química
12.
Sci Bull (Beijing) ; 64(3): 180-188, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32288967

RESUMEN

Influenza is a persistent threat to human health and there is a continuing requirement for updating anti-influenza strategies. Initiated by observations of different endoplasmic reticulum (ER) responses of host to seasonal H1N1 and highly pathogenic avian influenza (HPAI) A H5N1 infections, we identified an alternative antiviral role of tauroursodeoxycholic acid (TUDCA), a clinically available ER stress inhibitor, both in vitro and in vivo. Rather than modulating ER stress in host cells, TUDCA abolished the proton conductivity of viral M2 by disrupting its oligomeric states, which induces inefficient viral infection. We also showed that M2 penetrated cells, whose intracellular uptake depended on its proton channel activity, an effect observed in both TUDCA and M2 inhibitor amantadine. The identification and application of TUDCA as an inhibitor of M2 proton channel will expand our understanding of IAV biology and complement current anti-IAV arsenals.

13.
Plant Physiol Biochem ; 135: 51-60, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30500518

RESUMEN

Chloroplast movement mediated by the plant-specific phototropin blue light photoreceptors is crucial for plants to cope with fluctuating light conditions. While chloroplasts accumulate at weak light-illuminated areas, chloroplast avoidance response mediated primarily by the phototropin2 (phot2) receptor is induced by strong light illumination. Although extensive studies have been performed on phot2-mediated chloroplast avoidance in the model plant Arabidopsis, little is known on the role of the corresponding PHOT2 orthologs in chloroplast movement in cotton. In this study, we found that chloroplast avoidance movement also occurs in the tetraploid G. hirsutum and two diploid species, G. arboreum and G. raimondii, albeit with distinct features. Further bioinformatics and genetic analysis identified the cotton PHOT2 ortholog, GhPHOT2-1, which retained a conserved role in plant chloroplast avoidance movement under strong blue light. Ghphot2-1was localized in the plasma membrane and formed aggregates after high blue light irradiation. Constitutive expression of GhPHOT2-1 restored chloroplast avoidance and accumulation response, as well as phototropism, and leaf flattening characteristics of the Arabidopsis phot2 or phot1 phot2 mutants. On the contrary, silencing of GhPHOT2-1 by virus-induced gene silencing (VIGS) disrupted high blue light-induced chloroplast avoidance movement and caused photo damage in cotton leaves. Taken together, these findings demonstrated that GhPHOT2-1 is a conserved PHOT2 ortholog in regulating chloroplast avoidance and the other aforementioned phot2-mediated responses, implicating its potential role for improving high light tolerance in cotton cultivars.


Asunto(s)
Cloroplastos/efectos de la radiación , Genes de Plantas/fisiología , Gossypium/efectos de la radiación , Fototropinas/fisiología , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Membrana Celular/fisiología , Membrana Celular/efectos de la radiación , Cloroplastos/fisiología , Genes de Plantas/genética , Gossypium/genética , Gossypium/fisiología , Luz , Fototropinas/genética , Filogenia , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia
14.
Sci China Life Sci ; 62(3): 321-332, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30238279

RESUMEN

Plant-derived microRNAs have recently been reported to function in human blood and tissues. Controversy was immediately raised due to possible contamination and the lack of large sample sizes. Here, we report thousands of unique small RNAs derived from traditional Chinese medicine (TCM) herbs found in human blood cells and mouse lung tissues using a large-scale analysis. We extracted small RNAs from decoctions of 10 TCM plants (Ban Zhi Lian, Chai Hu, Chuan Xin Lian, Di Ding Zi Jin, Huang Qin, Jin Yin Hua, Lian Qiao, Pu Gong Ying, Xia Ku Cao, and Yu Xing Cao) and obtained millions of RNA sequences from each herb. We also obtained RNA-Seq data from the blood cells of humans who consumed herbal decoctions and from the lung tissues of mice administered RNAs from herbal decoctions via oral gavage. We identified thousands of unique small RNA sequences in human blood cells and mouse lung tissues. Some of these identified small RNAs from Chuan Xin Lian and Hong Jing Tian could be mapped to the genomes of the herbs, confirming their TCM plant origin. Small RNAs derived from herbs regulate mammalian gene expression in a sequence-specific manner, and thus are a superior novel class of herbal drug components that hold great potential as oral gene-targeted therapeutics, highlighting the important role of herbgenomics in their development.


Asunto(s)
Medicamentos Herbarios Chinos/metabolismo , Pulmón/metabolismo , Plantas Medicinales/genética , ARN de Planta/genética , ARN Pequeño no Traducido/genética , Animales , Bupleurum/metabolismo , Medicamentos Herbarios Chinos/administración & dosificación , Regulación de la Expresión Génica , Humanos , Medicina Tradicional China/métodos , Medicina Tradicional China/tendencias , Ratones , Extractos Vegetales/metabolismo , Plantas Medicinales/clasificación , ARN de Planta/sangre , ARN de Planta/metabolismo , ARN Pequeño no Traducido/sangre , ARN Pequeño no Traducido/metabolismo , Scutellaria baicalensis/metabolismo , Análisis de Secuencia de ARN/métodos
15.
J Org Chem ; 83(17): 10430-10435, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30113837

RESUMEN

An atom-economic synthesis of useful 1 H-indol-3-yl esters has been demonstrated by an N-heterocyclic carbene (NHC)-catalyzed formal conjugate hydroacylation of 2-phenyl-indol-3-ones with readily accessible aldehydes. This reaction involves a reductive hydride transfer process that was rarely investigated in the field of NHC catalysis. In this process, the hydrogen from the aldehydes was formally transferred to a heteroatom with NHC catalysis for the first time.

16.
Front Plant Sci ; 9: 438, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29706976

RESUMEN

Trichothecene mycotoxins, such as deoxynivalenol (DON) produced by the fungal pathogen, Fusarium graminearum, are not only important for plant infection but are also harmful to human and animal health. Trichothecene targets the ribosomal protein Rpl3 that is conserved in eukaryotes. Hence, a self-defense mechanism must exist in DON-producing fungi. It is reported that TRI (trichothecene biosynthesis) 101 and TRI12 are two genes responsible for self-defense against trichothecene toxins in Fusarium. In this study, however, we found that simultaneous disruption of TRI101 and TRI12 has no obvious influence on DON resistance upon exogenous DON treatment in F. graminearum, suggesting that other mechanisms may be involved in self-defense. By using RNA-seq, we identified 253 genes specifically induced in DON-treated cultures compared with samples from cultures treated or untreated with cycloheximide, a commonly used inhibitor of eukaryotic protein synthesis. We found that transporter genes are significantly enriched in this group of DON-induced genes. Of those genes, 15 encode major facilitator superfamily transporters likely involved in mycotoxin efflux. Significantly, we found that genes involved in the metabolism of gamma-aminobutyric acid (GABA), a known inducer of DON production in F. graminearum, are significantly enriched among the DON-induced genes. The GABA biosynthesis gene PROLINE UTILIZATION 2-2 (PUT2-2) is downregulated, while GABA degradation genes are upregulated at least twofold upon treatment with DON, resulting in decreased levels of GABA. Taken together, our results suggest that transporters influencing DON efflux are important for self-defense and that GABA mediates the balance of DON production and self-defense in F. graminearum.

17.
J Integr Plant Biol ; 60(7): 562-577, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29393576

RESUMEN

Two redundant blue-light receptors, known as phototropins (phot1 and phot2), influence a variety of physiological responses, including phototropism, chloroplast positioning, and stomatal opening in Arabidopsis thaliana. Whereas phot1 functions in both low- and high-intensity blue light (HBL), phot2 functions primarily in HBL. Here, we aimed to elucidate phot2-specific functions by screening for HBL-insensitive mutants among mutagenized Arabidopsis phot1 mutants. One of the resulting phot2 signaling associated (p2sa) double mutants, phot1 p2sa2, exhibited phototropic defects that could be restored by constitutively expressing NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3), indicating that P2SA2 was allelic to NPH3. It was observed that NPH3-GFP signal mainly localized to and clustered on the plasma membrane in darkness. This NPH3 clustering on the plasma membrane was not affected by mutations in genes encoding proteins that interact with NPH3, including PHOT1, PHOT2 and ROOT PHOTOTROPISM 2 (RPT2). However, the HBL irradiation-mediated release of NPH3 proteins into the cytoplasm was inhibited in phot1 mutants and enhanced in phot2 and rpt2-2 mutants. Furthermore, HBL-induced hypocotyl phototropism was enhanced in phot1 mutants and inhibited in the phot2 and rpt2-2 mutants. Our findings indicate that phot1 regulates the dissociation of NPH3 from the plasma membrane, whereas phot2 mediates the stabilization and relocation of NPH3 to the plasma membrane to acclimate to HBL.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Luz , Fototropismo/efectos de la radiación , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Etiolado/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Proteínas Fluorescentes Verdes/metabolismo , Hipocótilo/metabolismo , Hipocótilo/efectos de la radiación , Mutación/genética , Fototropinas/metabolismo , Plantas Modificadas Genéticamente , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Plantones/genética , Plantones/efectos de la radiación , Transducción de Señal , Fracciones Subcelulares/metabolismo
18.
Chemistry ; 24(9): 2103-2108, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29236349

RESUMEN

An NHC-catalyzed formal [3+4] annulation of α,ß-unsaturated acylazoliums with protecting-group-free aryl 1,2-diamines was developed for a direct and highly enantioselective synthesis of 4-aryl N-H-free 1,5-benzodiazepin-2-ones. This methodology offers an efficient and rapid access to a wide range of enantioenriched target compounds from easily accessible starting materials. The protocol is also scalable and the desired products can easily undergo subsequent N-functionalization to afford diverse N-substituted derivatives. Additionally, a mechanism was proposed to explain the high enantioselectivity in this process.

19.
Org Lett ; 19(13): 3470-3473, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28598636

RESUMEN

An unprecedented formal [3 + 4] annulation of α,ß-unsaturated acyl azoliums with 2-aminobenzenethiols has been utilized to synthesize enantioenriched N-H-free 1,5-benzothiazepines, which are recognized as privileged structures in numerous biologically active scaffolds. This protocol offers a rapid and direct pathway to access the target compounds with high enantioselectivities and has been applied in the concise synthesis of chiral drug (R)-thiazesim.

20.
Int J Mol Sci ; 17(10)2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27690016

RESUMEN

Adrenocorticotrophin (ACTH)-secreting pituitary adenoma, also known as Cushing disease (CD), is rare and causes metabolic syndrome, cardiovascular disease and osteoporosis due to hypercortisolism. However, the molecular pathogenesis of CD is still unclear because of a lack of human cell lines and animal models. Here, we study 106 clinical characteristics and gene expression changes from 118 patients, the largest cohort of CD in a single-center. RNA deep sequencing is used to examine genotypic changes in nine paired female ACTH-secreting pituitary adenomas and adjacent nontumorous pituitary tissues (ANPT). We develop a novel analysis linking disease clinical characteristics and whole transcriptomic changes, using Pearson Correlation Coefficient to discover a molecular network mechanism. We report that osteoporosis is distinguished from the phenotype and genotype analysis. A cluster of genes involved in osteoporosis is identified using Pearson correlation coefficient analysis. Most of the genes are reported in the bone related literature, confirming the feasibility of phenotype-genotype association analysis, which could be used in the analysis of almost all diseases. Secreted phosphoprotein 1 (SPP1), collagen type I α 1 chain (COL1A1), 5'-nucleotidase ecto (NT5E), HtrA serine peptidase 1 (HTRA1) and angiopoietin 1 (ANGPT1) and their signalling pathways are shown to be involved in osteoporosis in CD patients. Our discoveries provide a molecular link for osteoporosis in CD patients, and may open new potential avenues for osteoporosis intervention and treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...