Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38881036

RESUMEN

BACKGROUND AND PURPOSE: Ulcerative colitis (UC) is a refractory inflammatory disease associated with immune dysregulation. Elevated levels of heat shock protein (HSP) 90 in the ß but not α subtype were positively associated with disease status in UC patients. This study validated the possibility that pharmacological inhibition or reduction of HSP90ß would alleviate colitis, induced by dextran sulfate sodium, in mice and elucidated its mechanisms. EXPERIMENTAL APPROACH: Histopathological and biochemical analysis assessed disease severity, and bioinformatics and correlation analysis explained the association between the many immune cells and HSP90ß. Flow cytometry was used to analyse the homeostasis and transdifferentiation of Th17 and Treg cells. In vitro inhibition and adoptive transfer assays were used to investigate functions of the phenotypically transformed Th17 cells. Metabolomic analysis, DNA methylation detection and chromatin immunoprecipitation were used to explore these mechanisms. KEY RESULTS: The selective pharmacological inhibitor (HSP90ßi) and shHSP90ß significantly mitigated UC in mice and promoted transformation of Th17 to Treg cell phenotype, via Foxp3 transcription. The phenotypically-transformed Th17 cells by HSP90ßi or shHSP90ß were able to inhibit lymphocyte proliferation and colitis in mice. HSP90ßi and shHSP90ß selectively weakened glycolysis by stopping the direct association of HSP90ß and GLUT1, the key glucose transporter, to accelerate ubiquitination degradation of GLUT1, and enhance the methylation of Foxp3 CNS2 region. Then, the mediator path was identified as the "lactate-STAT5-TET2" cascade. CONCLUSION AND IMPLICATIONS: HSP90ß shapes the fate of Th17 cells via glycolysis-controlled methylation modification to affect UC progression, which provides a new therapeutic target for UC.

2.
Biomed Res Int ; 2021: 6650045, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124254

RESUMEN

We have previously reported that F1012-2, a sesquiterpene lactone isolated from the Chinese herbal medicine Eupatorium lindleyanum DC., exhibits strong effects against Triple Negative Breast Cancer (TNBC). In this study, we found F1012-2 effectively inhibited cell migration and invasion detected by wound healing and transwell assays. In order to elucidate the potential mechanisms of F1012-2, we further studied its effect on DNA damage in TNBC cell lines. Using single cell gel electrophoresis (comet assay), immunofluorescence, and western blotting assays, we found that F1012-2 treatment induced significant DNA strand breaks and γ-H2AX activation. Moreover, exposure to F1012-2 led to overproduction of reactive oxygen species (ROS). NAC treatment completely eliminated ROS, which may be due to the interaction between NAC and F1012-2. A further study of the molecular mechanisms demonstrated that the MAPK signaling pathway participated in the anti-TNBC effect of F1012-2. Pretreatment with specific inhibitors targeting JNK (SP600125) and ERK (PD98059) could rescue the decrease in cell viability and inhibit expressions of JNK and ERK phosphorylation, but SB203580 had no effects. Finally, in the acute toxicity experiment, there were no obvious symptoms of poisoning in the F1012-2 treatment group. An in vivo study demonstrated that F1012-2 significantly suppressed the tumor growth and induced DNA damage. In conclusion, the activity of F1012-2-induced DNA damage in TNBC was found in vivo and in vitro, which might trigger the MAPK pathway through ROS accumulation. These results indicate that F1012-2 may be an effective anti-TNBC therapeutic agent.


Asunto(s)
Daño del ADN , ADN de Neoplasias/metabolismo , Lactonas/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Sesquiterpenos/farmacología , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , ADN de Neoplasias/genética , Femenino , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA