Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(10): 4471-4478, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37155184

RESUMEN

Metal ion intercalation into Group VI transition metal dichalcogenides enables control over their carrier transport properties. In this work, we demonstrate a low-temperature, solution-phase synthetic method to intercalate cationic vanadium complexes into bulk WS2. Vanadium intercalation expands the interlayer spacing from 6.2 to 14.2 Å and stabilizes the 1T' phase of WS2. Kelvin-probe force microscopy measurements indicate that vanadium binding in the van der Waals gap causes an increase in the Fermi level of 1T'-WS2 by 80 meV due to hybridization of vanadium 3d orbitals with the conduction band of the TMD. As a result, the carrier type switches from p-type to n-type, and carrier mobility increases by an order of magnitude relative to the Li-intercalated precursor. Both the conductivity and thermal activation barrier for carrier transport are readily tuned by varying the concentration of VCl3 during the cation-exchange reaction.

2.
Inorg Chem ; 60(10): 6950-6956, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33835781

RESUMEN

Electronic doping of transition-metal oxides (TMOs) is typically accomplished through the synthesis of nonstoichiometric oxide compositions and the subsequent ionization of intrinsic lattice defects. As a result, ambipolar doping of wide-band-gap TMOs is difficult to achieve because the formation energies and stabilities of vacancy and interstitial defects vary widely as a function of the oxide composition and crystal structure. The facile formation of lattice defects for one carrier type is frequently paired with the high-energy and unstable generation of defects required for the opposite carrier polarity. Previous work from our group showed that the brucite (ß-phase) layered metal hydroxides of Co and Ni, intrinsically p-type materials in their anhydrous three-dimensional forms, could be n-doped using a strong chemical reductant. In this work, we extend the electron-doping study to the α polymorph of Co(OH)2 and elucidate the defects responsible for n-type doping in these two-dimensional materials. Through structural and electronic comparisons between the α, ß, and rock-salt structures within the cobalt (hydr)oxide family of materials, we show that both layered structures exhibit facile formation of anion vacancies, the necessary defect for n-type doping, that are not accessible in the cubic CoO structure. However, the brucite polymorph is much more stable to reductive decomposition in the presence of doped electrons because of its tighter layer-to-layer stacking and octahedral coordination geometry, which results in a maximum conductivity of 10-4 S/cm, 2 orders of magnitude higher than the maximum value attainable on the α-Co(OH)2 structure.

3.
IEEE Trans Vis Comput Graph ; 27(3): 2073-2084, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31567091

RESUMEN

Granular media is the second-most-manipulated substance on Earth, second only to water. However, simulation of granular media is still challenging due to the complexity of granular materials and the large number of discrete solid particles. As we know, dry granular materials could form a hybrid state between a fluid and a solid, therefore we propose a two-layer model and divide the simulation domain into a dilute layer, where granules can move freely as a fluid, and a dense layer, where granules act more like a solid. Motivated by the shallow water equations, we derive a set of shallow sand equations for modeling dry granular flows by depth-integrating three-dimensional governing equations along its vertical direction. Unlike previous methods for simulating a 2D granular media, our model does not restrict the depth of the granular media to be shallow anymore. To allow efficient fluid-solid interactions, we also present a ray casting algorithm for one-way solid-fluid coupling. Finally, we introduce a particle-tracking method to improve the visual representation. Our method can be efficiently implemented based on a height field and is fully compatible with modern GPUs, therefore allows us to simulate large-scale dry granular flows in real time.

4.
Nano Lett ; 20(10): 7580-7587, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32877192

RESUMEN

Ambipolar doping of metal oxides is critical toward broadening the functionality of semiconducting oxides in electronic devices. Most metal oxides, however, show a strong preference for a single doping polarity due to the intrinsic stability of particular defects in an oxide lattice. In this work, we demonstrate that layered metal hydroxide nanomaterials of Co and Ni, which are intrinsically p-doped in their anhydrous rock salt form, can be n-doped using n-BuLi as a strong electron donor. A combination of X-ray characterization techniques reveal that hydroxide vacancy formation, Li+ adsorption, and varying degrees of electron delocalization are responsible for the stability of injected electrons. The doped electrons induce conductivity increases of 4-6 orders of magnitude relative to the undoped M(OH)2. We anticipate that chemical electron doping of layered metal hydroxides may be a general strategy to increase carrier concentration and stability for n-doping of intrinsically p-type metal oxides.

5.
Angew Chem Int Ed Engl ; 59(35): 14957-14964, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32438474

RESUMEN

Developing safe and efficient delivery systems for therapeutic biomacromolecules is a long-standing challenge. Herein, we report a newly developed combinatorial library of cholesteryl-based disulfide bond-containing biodegradable cationic lipidoid nanoparticles. We have identified a subset of this library which is effective for protein and mRNA delivery in vitro and in vivo. These lipidoids showed comparable transfection efficacies but much lower cytotoxicities compared to the Lpf2k in vitro. In vivo studies in adult mice demonstrated the successful delivery of genome engineering protein and mRNA molecules in the skeletal muscle (via intramuscular injection), lung and spleen (via intravenous injection), and brain (via lateral ventricle infusion).


Asunto(s)
Nanopartículas/metabolismo , Proteínas/síntesis química , ARN Mensajero/química , Animales , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA