Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4196, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760357

RESUMEN

Precious metals are core assets for the development of modern technologies in various fields. Their scarcity poses the question of their cost, life cycle and reuse. Recently, an emerging catalysis employing contact-electrification (CE) at water-solid interfaces to drive redox reaction, called contact-electro-catalysis (CEC), has been used to develop metal free mechano-catalytic methods to efficiently degrade refractory organic compounds, produce hydrogen peroxide, or leach metals from spent Li-Ion batteries. Here, we show ultrasonic CEC can successfully drive the reduction of Ag(ac), Rh3+, [PtCl4]2-, Ag+, Hg2+, Pd2+, [AuCl4]-, and Ir3+, in both anaerobic and aerobic conditions. The effect of oxygen on the reaction is studied by electron paramagnetic resonance (EPR) spectroscopy and ab-initio simulation. Combining measurements of charge transfers during water-solid CE, EPR spectroscopy and gold extraction experiments help show the link between CE and CEC. What's more, this method based on water-solid CE is capable of extracting gold from synthetic solutions with concentrations ranging from as low as 0.196 ppm up to 196 ppm, reaching in 3 h extraction capacities ranging from 0.756 to 722.5 mg g-1 in 3 h. Finally, we showed CEC is employed to design a metal-free, selective, and recyclable catalytic gold extraction methods from e-waste aqueous leachates.

2.
Adv Mater ; : e2313288, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38537247

RESUMEN

Recently, perovskite photodetectors (PDs) are risen to prominence due to substantial research interest. Beyond merely tweaking the composition of materials, a cutting-edge advancement lies in leveraging the innate piezoelectric polarization properties of perovskites themselves. Here, the investigation shows utilizing Ti3C2Tx, a typical MXene, as an intermediate layer for significantly boosting the piezoelectric property of MAPbI3 thin films. This improvement is primarily attributed to the enhanced polarization of the methylammonium (MA+) groups within MAPbI3, induced by the OH groups present in Ti3C2Tx. A flexible PD based on the MAPbI3/MXene heterostructure is then fabricated. The new device is sensitive to a wide range of wavelengths, displays greatly enhanced performance owing to the piezo-phototronic coupling. Moreover, the device is endowed with a greatly reduced response time, down to millisecond level, through the pyro-phototronic effect. The characterization shows applying a -1.2% compressive strain on the PD leads to a remarkable 102% increase in the common photocurrent, and a 76% increase in the pyro-phototronic current. The present work reveals how the emerging piezo-phototronic and pyro-phototronic effects can be employed to design high-performance flexible perovskite PDs.

3.
Small ; 20(2): e2305303, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658494

RESUMEN

Tribovoltaic nanogenerators (TVNG) represent a fantastic opportunity for developing low-frequency energy harvesting and self-powered sensing, by exploiting their real-time direct-current (DC) output. Here, a thorough study of the effect of relative humidity (RH) on a TVNG consisting of 4H-SiC (n-type) and metallic copper foil (SM-TVNG) is presented. The SM-TVNG shows a remarkable sensitivity to RH and an abnormal RH dependence. When RH increases from ambient humidity up to 80%, an increasing electrical output is observed. However, when RH rises from 80% to 98%, the signal output not only decreases, but its direction reverses as it crosses 90% RH. This behavior differs greatly from that of a Si-based TVNG, whose output constantly increases with RH. The behavior of the SM-TVNG might result from the competition between the built-in electric field induced by metal-semiconductor contact and a strong triboelectric electric field induced by solid-liquid triboelectrification under high RH. The authors also demonstrated that both SM-TVNG and Si-based TVNG can work effectively as-is even fully submerged in deionized water. This mechanism can affect other devices and be applied to design self-powered sensors working under high RH or underwater.

4.
Adv Mater ; 35(46): e2304387, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37487242

RESUMEN

The recent intensification of the study of contact-electrification at water-solid interfaces and its role in physicochemical processes lead to the realization that electron transfers during water-solid contact-electrification can drive chemical reactions. This mechanism, named contact-electro-catalysis (CEC), allows chemically inert fluorinated polymers to act like single electrode electrochemical systems. This study shows hydrogen peroxide (H2 O2 ) is generated from air and deionized water, by ultrasound driven CEC, using fluorinated ethylene propylene (FEP) as the catalyst. For a mass ratio of catalyst to solution of 1:10000, at 20 °C, the kinetic rate of H2 O2 evolution reaches 58.87 mmol L-1  gcat -1  h-1 . Electron paramagnetic resonance (EPR) shows electrons are emitted in the solution by the charged FEP, during ultrasonication. EPR and isotope labelling experiments show H2 O2 is formed from hydroxyl radicals (HO• ) or two superoxide radicals (O2 •- ) generated by CEC. Finally, it is traditionally believed such radicals migrate in the solution by Brownian diffusion prior to reactions. However, ab-initio molecular dynamic calculations reveal the radicals can react by exchanging protons and electrons through the hydrogen bonds network of water, i.e., owing to the Grotthuss mechanism. This mechanism can be relevant to other systems, artificial or natural, generating H2 O2 from air and water.

5.
Adv Sci (Weinh) ; 10(18): e2300650, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37166066

RESUMEN

Piezoelectric nanogenerator (PENG) for practical application is constrained by low output and difficult polarization. In this work, a kind of flexible PENG with high output and self-polarization is fabricated by constructing CsPbBr3 -Ti3 C2 Tx heterojunctions in PVDF fiber. The polarized charges rapidly migrate to the electrodes from the Ti3 C2 Tx nanosheets by forming heterojunctions, achieving the maximum utilization of polarized charges and leading to enhanced piezoelectric output macroscopically. Optimally, PVDF/4wt%CsPbBr3 /0.6wt%Ti3 C2 Tx -PENG exhibits an excellent voltage output of 160 V under self-polarization conditions, which is higher than other self-polarized PENG previously. Further, the working principle and self-polarization mechanism are uncovered by calculating the interfacial charge and electric field using first-principles calculation. In addition, PVDF/4wt%CsPbBr3 /0.6wt%Ti3 C2 Tx -PENG exhibits better water and thermal stability attributed to the protection of PVDF. It is also evaluated in practice by harvesting the energy from human palm taps and successfully lighting up 150 LEDs and an electronic watch. This work presents a new idea of design for high-performance self-polarization PENG.


Asunto(s)
Electrónica , Titanio , Humanos , Electrodos , Ingeniería
6.
ACS Appl Mater Interfaces ; 14(49): 55192-55200, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36461926

RESUMEN

Tribovoltaic nanogenerators (TVNGs) are an emerging class of devices for high-entropy energy conversion and mechanical sensing that benefit from their outstanding real-time direct current output characteristics. Here, a self-powered TVNG was fabricated using a small-area 4H-SiC semiconductor wafer and a large-area copper foil. Thus, the cost of materials remains low compared to devices employing large-scale semiconductors. The 4H-SiC/metal-TVNGs (SM-TVNGs) presented here are sensitive to vertical force and sliding velocity, making them appropriate for mechanical sensing. Notably, owing to the modulated bindingtons and surface states, these SM-TVNGs performed well in a harsh environment, namely, in high-temperature and high-humidity conditions. In addition, the SM-TVNGs exhibited an excellent wear-resisting property. On these bases, we designed a self-powered and real-time monitoring device able to estimate the number of staff present in various areas of a deep mining site, a high-temperature and high-humidity environment. This work not only discloses basic physics behind the tribovoltaic effect but also sheds light on possible applications of SM-TVNGs for wear-resisting and stable mechanical sensors in harsh environments.

7.
Nat Commun ; 13(1): 5230, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064784

RESUMEN

Electron transfer has been proven the dominant charge carrier during contact electrification at the liquid-solid interface. However, the effect of electron spin in contact electrification remains to be investigated. This study examines the charge transfer between different liquids and ferrimagnetic solids in a magnetic field, focusing on the contribution of O2 molecules to the liquid-solid contact electrification. The findings reveal that magnetic fields promote electron transfer at the O2-containing liquid-solid interfaces. Moreover, magnetic field-induced electron transfer increases at higher O2 concentrations in the liquids and decreases at elevated temperatures. The results indicate spin-selected electron transfer at liquid-solid interface. External magnetic fields can modulate the spin conversion of the radical pairs at the O2-containing liquid and ferrimagnetic solid interfaces due to the Zeeman interaction, promoting electron transfer. A spin-selected electron transfer model for liquid-solid contact electrification is further proposed based on the radical pair mechanism, in which the HO2 molecules and the free unpaired electrons from the ferrimagnetic solids are considered radical pairs. The spin conversion of the [HO2• •e-] pairs is affected by magnetic fields, rendering the electron transfer magnetic field-sensitive.

8.
Adv Mater ; 34(35): e2204363, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35817411

RESUMEN

Silicon carbide (SiC), one of the third-generation semiconductor materials with excellent electrical and optoelectronic properties, is ideal for high light-sensing performance. Here, a self-powered SiC ultraviolet (UV) photodetector (PD) is constructed with wider applicability and higher commercialization potential. The great performance of the PD is realized by a remarkable photoinduced dynamic Schottky effect derived from the symbiotic modulation of Schottky and Ohmic contact. Using the pyro-phototronic effect that exists in the N-doped 4H-SiC single crystal PDs, a fast pyroelectric response time of 0.27 s is achieved, which is almost ten times shorter than that obtained from the steady-state signal under UV illumination. The maximal transient photoresponsivity reaches 9.12 nA mW-1 , which is ≈20% higher than the conventional photoelectric signal. Moreover, different regions of the 4H-SiC centimeter-scale chip output distinct signals under UV illumination, demonstrating efficient optical imaging and information transmission capabilities of this device. This work not only reveals the fundamental optoelectronic physics lying in this vital third-generation semiconductor, but also sheds light on its potential photosensing applications for large-scale commercialization.

9.
ACS Appl Mater Interfaces ; 14(3): 4775-4782, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35020344

RESUMEN

The related studies and applications of ZnS-based phosphorescent materials involve various aspects such as lighting, display, sensing, electronic signatures, and confidential information. Here, triboelectrification-induced electroluminescence (TIEL) of the ZnS:Cu due to the triboelectric leakage field is discovered via a gently horizontal sliding between a ZnS:Cu particle-doped polydimethylsiloxane (PDMS) film and a polytetrafluoroethylene (PTFE) or fluorinated ethylene propylene (FEP) film, whose intensity is positively correlated with the temperature, the doping ratio of ZnS:Cu, the pressure, and the frequency. It is also demonstrated that the TIEL mainly occurs inside the bulk film, where the ZnS:Cu phosphor particles can be polarized instantaneously by the leakage electric field of triboelectrification. The polarization will lead to a tilted energy band of the ZnS, resulting in an emitting of green light due to electrons detrapped into the conduction band and recombined with holes in the impurity state. This study not only reveals great fundamental physics for understanding of luminescence induced by a simple sliding between two triboelectric materials but also indicates another way for triboelectrification to be used in advanced optoelectronic devices.

10.
Nat Commun ; 13(1): 130, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013271

RESUMEN

Mechanochemistry has been studied for some time, but research on the reactivity of charges exchanged by contact-electrification (CE) during mechanical stimulation remains scarce. Here, we demonstrate that electrons transferred during the CE between pristine dielectric powders and water can be utilized to directly catalyze reactions without the use of conventional catalysts. Specifically, frequent CE at Fluorinated Ethylene Propylene (FEP) - water interface induces electron-exchanges, thus forming reactive oxygen species for the degradation of an aqueous methyl orange solution. Contact-electro-catalysis, by conjunction of CE, mechanochemistry and catalysis, has been proposed as a general mechanism, which has been demonstrated to be effective for various dielectric materials, such as Teflon, Nylon-6,6 and rubber. This original catalytic principle not only expands the range of catalytic materials, but also enables us to envisage catalytic processes through mechano-induced contact-electrification.

11.
Nanomicro Lett ; 14(1): 30, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34902072

RESUMEN

Ultra-stable piezoelectric nanogenerator (PENG) driven by environmental actuation sources with all-weather service capability is highly desirable. Here, the PENG based on N doped 4H-SiC nanohole arrays (NHAs) is proposed to harvest ambient energy under low/high temperature and relative humidity (RH) conditions. Finite element method simulation of N doped 4H-SiC NHAs in compression mode is developed to evaluate the relationship between nanohole diameter and piezoelectric performance. The density of short circuit current of the assembled PENG reaches 313 nA cm-2, which is 1.57 times the output of PENG based on N doped 4H-SiC nanowire arrays. The enhancement can be attributed to the existence of nanohole sidewalls in NHAs. All-weather service capability of the PENG is verified after being treated at -80/80 ℃ and 0%/100% RH for 50 days. The PENG is promising to be widely used in practice worldwide to harvest biomechanical energy and mechanical energy.

12.
Micromachines (Basel) ; 12(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34832688

RESUMEN

In recent years, great progress has been made in the field of energy harvesting to satisfy increasing needs for portable, sustainable, and renewable energy. Among piezoelectric materials, poly(vinylidene fluoride) (PVDF) and its copolymers are the most promising materials for piezoelectric nanogenerators (PENGs) due to their unique electroactivity, high flexibility, good machinability, and long-term stability. So far, PVDF-based PENGs have made remarkable progress. In this paper, the effects of the existence of various nanofillers, including organic-inorganic lead halide perovskites, inorganic lead halide perovskites, perovskite-type oxides, semiconductor piezoelectric materials, two-dimensional layered materials, and ions, in PVDF and its copolymer structure on their piezoelectric response and energy-harvesting properties are reviewed. This review will enable researchers to understand the piezoelectric mechanisms of the PVDF-based composite-film PENGs, so as to effectively convert environmental mechanical stimulus into electrical energy, and finally realize self-powered sensors or high-performance power sources for electronic devices.

13.
Nano Lett ; 21(20): 8808-8816, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34612653

RESUMEN

Perovskite and semiconductor materials are always the focus of research because of their excellent properties, including pyroelectric, photovoltaic effects, and high light absorption. On basis of this, the design of combining BaTiO3 (BTO) thin films with a GaN layer to form a heterojunction structure with a pyro-phototronic effect has achieved an efficient self-powered BTO/GaN ultraviolet photodetector (PD) with high responsivity and a fast response speed. With cooling and prepolarization treatments, the photocurrent peak and plateau have been enhanced by up to 1348 and 1052%, and the response time of the pyroelectric and common photoelectric current are improved from 0.35 to 0.16 s and from 3.27 to 2.35 s with a bias applied, respectively. The self-powered BTO/GaN PD combined with a pyro-phototronic effect provides a new idea and optimization for realizing ultrafast ultraviolet sensing at room temperature, making it a promising candidate in environmentally friendly and economical ultraviolet optoelectronic devices.

14.
ACS Appl Mater Interfaces ; 13(27): 32278-32285, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34190532

RESUMEN

Organic piezoelectric nanogenerators (PENGs) with light weight, good flexibility, and simple processing are promising in mechanical energy conversion. Here, a high-output polymer PENG composed of a poly(vinylidene fluoride-trifluorethylene)/SnSe nanosheet (NS) nanocomposite film has been fabricated and tested. After a treatment with mixed solvents of N,N-dimethylformamide and 1,1,2,2-tetrachloroethane (TCE), the optimal nanocomposite PENG exhibits high piezoelectric properties with a piezoelectric coefficient (d33) of 25.06 pC·N-1, a prominent open-circuit voltage (Voc) of 15.36 V·cm-2, and a short-circuit current (Isc) of 1.02 µA·cm-2. Moreover, the PENG can generate an output power density of up to 10.72 µW·cm-2 under a vertical force of 50 N. The attractive piezoelectric performance results from the doping of SnSe NSs with a high piezoelectric coefficient and also the increased ß-phase ascribed to the introduction of nucleating agent NSs and the TCE solvent. The PENGs reveal great application potentials in consumer electronics.

15.
Materials (Basel) ; 14(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807942

RESUMEN

Organic-inorganic halide perovskites have attracted much attention thanks to their excellent optoelectronic performances. Here, a bulk CH3NH3PbBr3 (MAPbBr3) single crystal (SC) was fabricated, whose temperature and light polarization dependence was investigated by measuring photoluminescence. The presence of obvious band tail states was unveiled when the applied temperature was reduced from room temperature to 78 K. Temperature dependence of the bandgap of the MAPbBr3 SC was found to be abnormal compared with those of traditional semiconductors due to the presence of instabilization of out-of-phase tail states. The MAPbBr3 SC revealed an anisotropy light absorption for linearly polarized light with an anisotropy ratio of 1.45, and a circular dichroism ratio of up to 9% was discovered due to the spin-orbit coupling in the band tail states, exhibiting great polarization sensitivity of the MAPbBr3 SC for the application of light sensors. These key findings shed light on the development of potential optoelectronic and spintronic applications based on large-scaled organic-inorganic perovskite SCs.

16.
Nano Lett ; 20(11): 8298-8304, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33044827

RESUMEN

Piezo-phototronic effect is a fundamental effect of semiconductors lacking of central symmetry with geometries from one-dimensional (1D) nanowire to 3D bulk. Here, we present that the piezo-phototronic effect can even tune a spin-orbit coupled photoluminescence (PL) based on all-inorganic perovskite CsPbBr3 quantum dots (QDs). Although the cubic structure of CsPbBr3 QDs is nonpiezoelectric, a cooling treatment can change it to an orthorhombic structure, which is proven to possess a piezoelectric property. The spin-orbit coupled PL intensity is demonstrated to be dependent on the polarization of the excited light. Because of the manipulation of the spin-split energy levels via the piezo-phototronic effect, the spin-orbit coupled PL intensities under a -0.9% compressive strain for linearly and circularly polarized light excitations can be enhanced by 136% and 146%, respectively. These findings reveal fundamental understandings of the spin-orbit coupled PL dynamics and demonstrate promising optoelectronic applications of the piezo-phototronic effect in these QDs.

17.
Nat Nanotechnol ; 15(8): 661-667, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32572230

RESUMEN

Interface engineering by local polarization using piezoelectric1-4, pyroelectric5,6 and ferroelectric7-9 effects has attracted considerable attention as a promising approach for tunable electronics/optoelectronics, human-machine interfacing and artificial intelligence. However, this approach has mainly been applied to non-centrosymmetric semiconductors, such as wurtzite-structured ZnO and GaN, limiting its practical applications. Here we demonstrate an electronic regulation mechanism, the flexoelectronics, which is applicable to any semiconductor type, expanding flexoelectricity10-13 to conventional semiconductors such as Si, Ge and GaAs. The inner-crystal polarization potential generated by the flexoelectric field serving as a 'gate' can be used to modulate the metal-semiconductor interface Schottky barrier and further tune charge-carrier transport. We observe a giant flexoelectronic effect in bulk centrosymmetric semiconductors of Si, TiO2 and Nb-SrTiO3 with high strain sensitivity (>2,650), largely outperforming state-of-the-art Si-nanowire strain sensors and even piezoresistive, piezoelectric and ferroelectric nanodevices14. The effect can be used to mechanically switch the electronics in the nanoscale with fast response (<4 ms) and high resolution (~0.78 nm). This opens up the possibility of realizing strain-modulated electronics in centrosymmetric semiconductors, paving the way for local polarization field-controlled electronics and high-performance electromechanical applications.

18.
Adv Mater ; 32(21): e2000928, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32270901

RESUMEN

Contact electrification (CE or triboelectrification) is a common phenomenon, which can occur for almost all types of materials. In previous studies, the CE between insulators and metals has been widely discussed, while CE involving semiconductors is only recently. Here, a tribo-current is generated by sliding an N-type diamond coated tip on a P-type or N-type Si wafers. The density of surface states of the Si wafer is changed by introducing different densities of doping. It is found that the tribo-current between two sliding semiconductors increases with increasing density of surface states of the semiconductor and the sliding load. The results suggest that the tribo-current is induced by the tribovoltaic effect, in which the electron-hole pairs at the sliding interface are excited by the energy release during friction, which may be due to the transition of electrons between the surface states during contact, or bond formation across the sliding interface. The electron-hole pairs at the sliding interface are subsequently separated by the built-in electric field at the PN or NN heterojunctions, which results in a tribo-current, in analogy to that which occurs in the photovoltaic effect.

19.
Adv Mater ; 31(27): e1901418, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31095783

RESUMEN

Contact electrification (CE) (or triboelectrification) is a well-known phenomenon, and the identity of the charge carriers and their transfer mechanism have been discussed for decades. Recently, the species of transferred charges in the CE between a metal and a ceramic was revealed as electron transfer and its subsequent release is dominated by the thermionic emission process. Here, the release of CE-induced electrostatic charges on a dielectric surface under photon excitation is studied by varying the light intensity and wavelength, but under no significant raise in temperature. The results suggest that there exists a threshold photon energy for releasing the triboelectric charges from the surface, which is 4.1 eV (light wavelength at 300 nm) for SiO2 and 3.4 eV (light wavelength at 360 nm) for PVC; photons with energy smaller than this cannot effectively excite the surface electrostatic charges. This process is attributed to the photoelectron emission of the charges trapped in the surface states of the dielectric material. Further, a photoelectron emission model is proposed to describe light-induced charge decay on a dielectric surface. The findings provide an additional strong evidence about the electron transfer process in the CE between metals and dielectrics as well as polymers.

20.
ACS Nano ; 12(10): 10501-10508, 2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30277745

RESUMEN

Piezoelectric organic-inorganic lead halide perovskites have recently attracted much attention in the field of optoelectronic devices. However, their piezoelectric properties as a possible way to modulate device performances have rarely been reported. Here, we study experimentally a photodetector based on CH3NH3PbI3(MAPbI3) single crystals, whose performance is effectively modulated via an emerging effect-the piezo-phototronic effect, which is to use the piezoelectric polarization charges to tune the optoelectronic processes at the interface. A piezoelectric coefficient of 10.81 pm/V of the CH3NH3PbI3 single crystal is obtained. Under 680 nm laser illumination with a power density of 3.641 mW/cm2 and at an external bias of 2 V, compared to the case without straining, the light current of the photodetector is enhanced by ∼120% when a 43.48 kPa compressive pressure is applied. The response speed of the photocurrent is 3 and 2 times faster than the cases without applying pressure for the light-on and light-off states, respectively. This work proves that the performance of the photodetector based on MAPbI3 single crystals can be effectively enhanced by the piezo-phototronic effect, providing a good method for optimizing the performance of future perovskite-based optoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...