Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioeng Transl Med ; 9(4): e10638, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39036076

RESUMEN

Background: Microcirculatory perfusion disorder and inflammatory response are critical links in acute kidney injury (AKI). We aim to construct anti-vascular cell adhesion molecule-1(VCAM-1) targeted microbubbles (TM) to monitor renal microcirculatory perfusion and inflammatory response. Methods: TM carrying VCAM-1 polypeptide was constructed by biological coupling. The binding ability of TM to human umbilical vein endothelial cells (HUVECs) was detected. Bilateral renal ischemia-reperfusion injury (IRI) models of mice were established to evaluate microcirculatory perfusion and inflammatory response using TM. Thirty-six mice were randomly divided into six groups according to the different reperfusion time (0.5, 2, 6, 12, and 24 h) and sham-operated group (Sham group). The correlation of TM imaging with serum and histopathological biomarkers was investigated. Results: TM has advantages such as uniform distribution, regular shape, high stability, and good biosafety. TM could bind specifically to VCAM-1 molecule expressed by tumor necrosis factor-alpha (TNF-α)-treated HUVECs. In the renal IRI-AKI model, the area under the curve (AUC) of TM significantly decreased both in the renal cortical and medullary after 2 h of reperfusion compared with the Sham group (p < 0.05). Normalized intensity difference (NID) of TM at different reperfusion time was all higher than that of blank microbubbles (BM) and the Sham group (p < 0.05). Ultrasound molecular imaging of TM could detect AKI early before commonly used renal function markers, histopathological biomarkers, and BM imaging. AUC of TM was negatively correlated with serum creatinine (Scr), blood urea nitrogen (BUN), and Cystatin C (Cys-C) levels, and NID of TM was linearly correlated with VCAM-1, TNF-α, and interleukin-6 (IL-6) expression (p < 0.05). Conclusions: Ultrasound molecular imaging based on TM carrying VCAM-1 polypeptide can accurately evaluate the changes in renal microcirculatory perfusion and inflammatory response, which might be a promising modality for early diagnosis of AKI.

2.
Eur J Pharmacol ; 967: 176391, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325794

RESUMEN

The microcirculation hemodynamics change and inflammatory response are the two main pathophysiological mechanisms of renal ischemia-reperfusion injury (IRI) induced acute kidney injury (AKI). The treatment of microcirculation hemodynamics and inflammatory response can effectively alleviate renal injury and correct renal function. Picroside II (P II) has a wide range of pharmacological effects. Still, there are few studies on protecting IRI-AKI, and whether P II can improve renal microcirculation perfusion is still being determined. This study aims to explore the protective effect of P II on IRI-AKI and evaluate its ability to enhance renal microcirculation perfusion. In this study, a bilateral renal IRI-AKI model in mice was established, and the changes in renal microcirculation and inflammatory response were quantitatively evaluated before and after P II intervention by contrast-enhanced ultrasound (CEUS). At the same time, serum and tissue markers were measured to assess the changes in renal function. The results showed that after P II intervention, the levels of serum creatinine (Scr), blood urea nitrogen (BUN), serum cystatin C (Cys-C), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), malondialdehyde (MDA), and superoxide dismutase (SOD), as well as the time-to-peak (TTP), peak intensity (PI) and area under the curve (AUC), and the normalized intensity difference (NID) were all alleviated. In conclusion, P II can improve renal microcirculation perfusion changes caused by IRI-AKI, reduce inflammatory reactions during AKI, and enhance renal antioxidant stress capacity. P II may be a new and promising drug for treating IRI-AKI.


Asunto(s)
Lesión Renal Aguda , Cinamatos , Glucósidos Iridoides , Daño por Reperfusión , Ratones , Animales , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/patología , Riñón/patología , Daño por Reperfusión/complicaciones , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Reperfusión , Isquemia/patología
3.
Cancer Imaging ; 24(1): 7, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191513

RESUMEN

BACKGROUND: Ultrasound (US) has been widely used in screening and differential diagnosis of gallbladder wall thickening (GWT). However, the sensitivity and specificity for diagnosing wall-thickening type gallbladder cancer are limited, leading to delayed treatment or overtreatment. We aim to explore the value of high frame rate contrast enhanced ultrasound (H-CEUS) in distinguishing wall-thickening type gallbladder cancer (malignant) from GWT mimicking malignancy (benign). METHODS: This retrospective study enrolled consecutive patients with non-acute GWT who underwent US and H-CEUS examination before cholecystectomy. Clinical information, US image and H-CEUS image characteristics between malignant and benign GWT were compared. The independent risk factors for malignant GWT on H-CEUS images were selected by multivariate logistic regression analysis. The diagnostic performance of H-CEUS in determining malignant GWT was compared with that of the gallbladder reporting and data system (GB-RADS) score. RESULTS: Forty-six patients included 30 benign GWTs and 16 malignant GWTs. Only mural layering and interface with liver on US images were significantly different between malignant and benign GWT (P < 0.05). Differences in enhancement direction, vascular morphology, serous layer continuity, wash-out time and mural layering in the venous phase of GWT on H-CEUS images were significant between malignant and benign GWT (P < 0.05). The sensitivity, specificity and accuracy of H-CEUS based on enhancement direction, vascular morphology and wash-out time in the diagnosis of malignant GWT were 93.75%, 90.00%, and 91.30%, respectively. However, the sensitivity, specificity and accuracy of the GB-RADS score were only 68.75%, 73.33% and 71.74%, respectively. The area under ROC curve (AUC) of H-CEUS was significantly higher than that of the GB-RADS score (AUC = 0.965 vs. 0.756). CONCLUSIONS: H-CEUS can accurately detect enhancement direction, vascular morphology and wash-out time of GWT, with a higher diagnostic performance than the GB-RADS score in determining wall-thickening type gallbladder cancer. This study provides a novel imaging means with high accuracy for the diagnosis of wall-thickening type gallbladder cancer, thus may be better avoiding delayed treatment or overtreatment.


Asunto(s)
Neoplasias de la Vesícula Biliar , Humanos , Neoplasias de la Vesícula Biliar/diagnóstico por imagen , Estudios Retrospectivos , Ultrasonografía , Venas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA