Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
J Tradit Complement Med ; 14(3): 312-320, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38707926

RESUMEN

Background: Diabetic kidney disease (DKD) is one of diabetic complications, which has become the leading cause of end-stage kidney disease. In addition to angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker(ACEI/ARB) and sodium-glucose cotransporter-2 inhibitor (SGLT2i), traditional Chinese medicine (TCM) is an effective alternative treatment for DKD. In this study, the effect of Qufeng Tongluo (QFTL) decoction in decreasing proteinuria has been observed and its mechanism has been explored based on autophagy regulation in podocyte. Methods: In vivo study, db/db mice were used as diabetes model and db/m mice as blank control. Db/db mice were treated with QFTL decoction, rapamycin, QFTL + 3-Methyladenine (3-MA), trehalose, chloroquine (CQ) and QFTL + CQ. Mice urinary albumin/creatinine (UACR), nephrin and autophagy related proteins (LC3 and p62) in kidney tissue were detected after intervention of 9 weeks. Transcriptomics was operated with the kidney tissue from model group and QFTL group. In vitro study, mouse podocyte clone-5 (MPC-5) cells were stimulated with hyperglycemic media (30 mmol/L glucose) or cultured with normal media. High-glucose-stimulated MPC-5 cells were treated with QFTL freeze-drying powder, rapamycin, CQ, trehalose, QFTL+3-MA and QFTL + CQ. Cytoskeletal actin, nephrin, ATG-5, ATG-7, Beclin-1, cathepsin L and cathepsin B were assessed. mRFP-GFP-LC3 was established by stubRFP-sensGFP-LC3 lentivirus transfection. Results: QFTL decoction decreased the UACR and increased the nephrin level in kidney tissue and high-glucose-stimulated podocytes. Autophagy inhibitors, including 3-MA and chloroquine blocked the effects of QFTL decoction. Further study showed that QFTL decoction increased the LC3 expression and relieved p62 accumulation in podocytes of db/db mice. In high-glucose-stimulated MPC-5 cells, QFTL decoction rescued the inhibited LC3 and promoted the expression of ATG-5, ATG-7, and Beclin-1, while had no effect on the activity of cathepsin L and cathepsin B. Results of transcriptomics also showed that 51 autophagy related genes were regulated by QFTL decoction, including the genes of ATG10, SCOC, ATG4C, AMPK catalytic subunit, PI3K catalytic subunit, ATG3 and DRAM2. Conclusion: QFTL decoction decreased proteinuria and protected podocytes in db/db mice by regulating autophagy.

2.
STAR Protoc ; 5(2): 103029, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38728135

RESUMEN

Due to the higher and more rapid consumption of carbohydrates by cancer cells compared to normal cells, carbohydrates can be effectively employed as a targeted therapeutic strategy for tumor treatment. Here, we present a protocol for synthesizing sequence-controlled glycooligomers using both solution-phase and solid-phase systems. We outline detailed procedures for evaluating the safety and tumor-targeting properties of the sequence-controlled glycooligomers in vivo. For complete details on the use and execution of this protocol, please refer to Chen et al.1.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38752796

RESUMEN

Multifaceted nanoplatforms integrating fluorescence imaging and chemotherapy have garnered acknowledgment for their potential potency in cancer diagnosis and simultaneous in situ therapy. However, some drawbacks remain for traditional organic photosensitizers, such as poor photostability, short excitation wavelength, and shallow penetration depth, which will greatly lower the chemotherapy treatment efficiency. Herein, we present lipid-encapsulated two-photon active aggregation-induced emission (AIE) luminogen and paclitaxel (PTX) nanoparticles (AIE@PTX NPs) with bright red fluorescence emission, excellent photostability, and good biocompatibility. The AIE@PTX NPs exhibit dual functionality as two-photon probes for visualizing blood vessels and tumor structures, achieving penetration depth up to 186 and 120 µm, respectively. Furthermore, the tumor growth of the HeLa-xenograft model can be effectively prohibited after the fluorescence imaging-guided and PTX-induced chemotherapy, which shows great potential in the clinical application of two-photon cell and tumor fluorescence imaging and cancer treatment.

4.
Biomaterials ; 309: 122583, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38692148

RESUMEN

The urgent need for antimicrobial agents to combat infections caused by multidrug-resistant bacteria facilitates the exploration of alternative strategies such as photosensitizer (PS)-mediated photoinactivation. However, increasing studies have discovered uncorrelated bactericidal activities among PSs possessing similar photodynamic and pathogen-targeted properties. To optimize the photodynamic therapy (PDT) against infections, we investigated three type-I PSs of D-π-A AIEgens TI, TBI, and TTI. The capacities of reactive oxygen species (ROS) generation of TI, TBI, and TTI did not align with their bactericidal activities. Despite exhibiting the lowest photodynamic efficiency, TI exhibited the highest activities against methicillin-resistant Staphylococcus aureus (MRSA) by impairing the anti-oxidative responses of bacteria. By comparison, TTI, characterized by the strongest ROS production, inactivated intracellular MRSA by potentiating the inflammatory response of macrophages. Unlike TI and TTI, TBI, despite possessing moderate photodynamic activities and inducing ROS accumulation in both MRSA and macrophages, did not exhibit any antibacterial activity. Therefore, relying on the disturbed anti-oxidative metabolism of pathogens or potentiated host immune responses, transient ROS bursts can effectively control bacterial infections. Our study reevaluates the contribution of photodynamic activities of PSs to bacterial elimination and provides new insights into discovering novel antibacterial targets and agents.

5.
Medicine (Baltimore) ; 103(14): e37221, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579076

RESUMEN

BACKGROUND: Previous reports revealed that patients with acquired paralytic strabismus caused by central nervous system diseases are primarily affected by the etiology and treatment of the condition. Strabismus correction for these acquired paralytic strabismus should be performed as soon as the primary disease has been stabilized for 6 months in order to archive a favorable surgical outcome. CASE: We followed an infrequent case of longer-lasting supranuclear ophthalmoplegia secondary to brain stem cavernoma. OBSERVATION: A 25-year-old Chinese Han female developed aberrant head posture and ipsilateral conjugate gaze palsies 8 years after the first brainstem hemorrhage caused by pontine cavernoma. The patient was diagnosed with supranuclear ophthalmic palsy and brain stem cavernoma after surgery. A resection-recession procedure along with a rectus muscle transposition was performed. The patient's abnormal head position disappeared, with a normal primary position. CONCLUSION: Resection-recession procedures combined with rectus muscle transposition works very well for longer duration large-angle strabismus caused by brain stem cavernoma.


Asunto(s)
Oftalmoplejía , Estrabismo , Humanos , Femenino , Adulto , Músculos Oculomotores/cirugía , Estrabismo/cirugía , Oftalmoplejía/etiología , Oftalmoplejía/cirugía , Ojo , Puente , Procedimientos Quirúrgicos Oftalmológicos/métodos , Resultado del Tratamiento , Estudios Retrospectivos
6.
Nanomaterials (Basel) ; 14(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38668160

RESUMEN

Li-O2 batteries are considered a highly promising energy storage solution. However, their practical implementation is hindered by the sluggish kinetics of the oxygen reduction (ORR) and oxygen evolution (OER) reactions at cathodes during discharging and charging, respectively. In this work, we investigated the catalytic performance of Wn+1Cn and Wn+1CnO2 MXenes (n = 1, 2, and 3) as cathodes for Li-O2 batteries using first principles calculations. Both Wn+1Cn and Wn+1CnO2 MXenes show high conductivity, and their conductivity is further enhanced with increasing atomic layers, as reflected by the elevated density of states at the Fermi level. The oxygen functionalization can change the electronic properties of WC MXenes from the electrophilic W surface of Wn+1Cn to the nucleophilic O surface of Wn+1CnO2, which is beneficial for the activation of the Li-O bond, and thus promotes the Li+ deintercalation during the charge-discharge process. On both Wn+1Cn and Wn+1CnO2, the rate-determining step (RDS) of ORR is the formation of the (Li2O)2* product, while the RDS of OER is the LiO2* decomposition. The overpotentials of ORR and OER are positively linearly correlated with the adsorption energy of the RDS LixO2* intermediates. By lowering the energy band center, the oxygen functionalization and increasing atomic layers can effectively reduce the adsorption strength of the LixO2* intermediates, thereby reducing the ORR and OER overpotentials. The W4C3O2 MXene shows immense potential as a cathode catalyst for Li-O2 batteries due to its outstanding conductivity and super-low ORR, OER, and total overpotentials (0.25, 0.38, and 0.63 V).

7.
Tree Physiol ; 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281184

RESUMEN

Stomata are pivotal in modulating water and carbon processes within plants. However, our understanding of the temporal dynamics of water- and carbon-related traits, as influenced by stomatal behavior, remains limited. Here, we explore how stomatal regulation behavior and water- and carbon-related traits vary with changing environments by examining the seasonal variations in these traits of the native tree species Schima superba in low subtropical China. In February, April, and July of 2022, a series of water- and carbon-related traits were measured in the leaves and stems. The results showed that S. superba exhibited isohydric behavior in February when the soil dried out and vapor pressure deficit (VPD) was lower but anisohydric behavior in April and July when the soil was wetter and VPD was higher. In February, NSC and their components increased, and a relatively large contribution of soluble sugars to the change in NSC was observed. In the branches and phloem, NSC and their components displayed a relatively high monthly variability, suggesting their role in maintaining carbon balance within the trees. Conversely, the NSC in the leaves demonstrated minimal monthly variability. The specific leaf area, as well as the concentration of nitrogen (N) and phosphorus (P) per unit mass in leaves and the cumulative stem water release, exhibited a decrease with a reduction in soil water potential. Interestingly, the hydraulic conductivity remained consistent throughout this process. Furthermore, the relatively low monthly growth rate observed in February could suggest a carbon sink limitation. In conclusion, the increased NSC and decreased water status of S. superba under relatively stressed soil conditions indicated a trade-off between water and carbon storage. Our findings enhance our comprehension of the dynamics and regulation of water and carbon status in forests, thereby advancing the development of plant carbon and water process models under climate change scenarios.

8.
Carbohydr Polym ; 327: 121653, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171675

RESUMEN

Fenugreek (Trigonella foenum-graecum L) galactomannan play an important role in the food and pharmaceutical sectors due to its attractive physicochemical properties. In this study, the changes of structure, properties and biological activity of fenugreek galactomannan (FG) during germination are analyzed by the activity and mechanism of endogenous enzymes (α-D-galactosidase and ß-D-mannanase). The enzymes generally increased during germination and synergistically altered the structure of GM by cutting down the main chains and removing partial side residues. The mannose to galactose ratio (M/G) increased from 1.11 to 1.59, which is accompanied by a drastic decrease in molecular weight from 3.606 × 106 to 0.832 × 106 g/mol, and the drop of viscosity from 0.27 to 0.06 Pa·sn. The degraded macromolecules are attributed to the increase in solubility (from 64.55 % to 88.62 %). In terms of antioxidation and antidiabetic ability, germinated fenugreek galactomannan has the ability to scavenge 67.17 % ABTS free radicals and inhibit 86.89 % α-glucosidase. This galactomannan with low molecular weight and excellent biological activity precisely satisfies the current demands of pharmaceutical reagents and food industry. Seeds germination holds promise as a means of industrial scale production of low molecular weight galactomannans.


Asunto(s)
Trigonella , Trigonella/química , Semillas/química , Mananos/química , Extractos Vegetales/farmacología , Galactosa/análisis
9.
Food Res Int ; 176: 113798, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163709

RESUMEN

Camellia oleifera cake is a by-product, which is rich in functional chemical components. However, it is typically used as animal feed with no commercial value. The purpose of this study was to isolate and identify compounds from Camellia oleifera cake using a combination of foam fractionation and high-speed countercurrent chromatography (HSCCC) and to investigate their biological activities. Foam fractionation with enhanced drainage through a hollow regular decahedron (HRD) was first established for simultaneously enriching flavonoid glycosides and saponins for further separation of target compounds. Under suitable operating conditions, the introduction of HRD resulted in a threefold increase in enrichment ratio with no negative effect on recovery. A novel elution-extrusion countercurrent chromatography (EECCC) coupled with the consecutive injection mode was established for the successful simultaneous isolation of flavonoid glycosides and saponins. As a result, 38.7 mg of kaemferol-3-O-[2-O-D-glucopyranosyl-6-O-α-L-rhamnopyranosyl]-ß-D-glucopyranoside (purity of 98.17%, FI), 70.8 mg of kaemferol-3-O-[2-O-ß-D-xylopyranosyl-6-O-α-L-rhamnopyranosyl]-ß-D-glucopyranoside (purity of 97.52%, FII), and 560 mg of an oleanane-type saponin (purity of 92.32%, FIII) were separated from the sample (900 mg). The present study clearly showed that FI and II were natural antioxidants (IC50 < 35 µg/mL) without hemolytic effect. FIII displayed the effect of inhibiting Hela cell proliferation (IC50 < 30 µg/mL). Further erythrocyte experiments showed that this correlated with the extremely strong hemolytic effect of FIII. Overall, this study offers a potential strategy for efficient and green isolation of natural products, and is beneficial to further expanding the application of by-products (Camellia oleifera cake) in food, cosmetics, and pharmacy.


Asunto(s)
Camellia , Citostáticos , Saponinas , Humanos , Animales , Distribución en Contracorriente/métodos , Antioxidantes/farmacología , Citostáticos/análisis , Camellia/química , Células HeLa , Glicósidos/química , Saponinas/análisis , Flavonoides/análisis
10.
Int J Biol Macromol ; 257(Pt 1): 128627, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070803

RESUMEN

Biodegradable liquid mulch is considered a promising alternative to plastic mulch for sustainable agriculture. This work proposed a xyloglucan-based liquid mulch with multi-function using a combination of chemical modification and blending methods. The esterification product of tamarind xyloglucan (TXG) from forestry wastes was synthesized with benzoic anhydride (BA). The effect of esterification modification was investigated, and BA-TXG was utilized as a film-forming and sand-fixation agent. The rheological properties, thermal stability, and hydrophobicity were improved following esterification. Additionally, waterborne polyurethane and urea were incorporated into the mulch to enhance its mechanical strength (23.28 MPa, 80.71 %), and homogeneity, as well as improve its nutritive properties. The xyloglucan-based liquid mulch has excellent UV protection, a high haze value (approximately 90 %), and retains water at a rate of 80.45 %. SEM and immersion experiment showed the effect of xyloglucan-based liquid mulch on sustainable sand-fixation. Moreover, the liquid mulch treatment demonstrated an impressive germination rate of 83.8 % and degradation rate of 51.59 % (60 days). The modified polysaccharide film increases stability and slows down the degradation rate. Tamarind xyloglucan-based liquid mulch exhibits powerful and diverse optical properties as well as sand fixation functions, indicating their great potential in sustainable agriculture as an alternative to plastic mulch.


Asunto(s)
Tamarindus , Xilanos , Arena , Agricultura , Glucanos , Suelo/química
11.
Food Chem ; 440: 138313, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38159317

RESUMEN

The physicochemical and foam properties of non-purified water extracts (WE) and purified tea saponins (TS) from Camellia oleifera cake (byproduct) were compared. WE showed different fluid properties at equal saponin concentrations (1.0 wt%) compared to TS. Particularly, it exhibited limited micelle size (average 434.1 nm), effective viscosity (0.15 Pa·s), and surface tension (43.9 mN/m) independently of pH. Moreover, the foam properties of WE were comparable to TS and better than sodium caseinate, especially foam stability. WE foam was more stable than TS foam under pH (3-7) and heating (40-80 °C). In the presence of NaCl, sucrose, and ethanol (5-20 wt%), WE and TS were effective and had similar foam behavior. Low concentrations of sucrose (<10 wt%)/ethanol (<20 wt%) significantly increased the foam capacity, while ethanol over 30 wt% was unfavorable. WE/TS foam contributes significantly to the desired physicochemical and sensory attributes (taste, texture, and appearance) of foods.


Asunto(s)
Camellia , Saponinas , Camellia/química , Saponinas/química , Agua , Etanol , Sacarosa
12.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139196

RESUMEN

Tartary buckwheat (Fagopyrum tataricum) is an important plant, utilized for both medicine and food. It has become a current research hotspot due to its rich content of flavonoids, which are beneficial for human health. Anthocyanins (ATs) and proanthocyanidins (PAs) are the two main kinds of flavonoid compounds in Tartary buckwheat, which participate in the pigmentation of some tissue as well as rendering resistance to many biotic and abiotic stresses. Additionally, Tartary buckwheat anthocyanins and PAs have many health benefits for humans and the plant itself. However, little is known about the regulation mechanism of the biosynthesis of anthocyanin and PA in Tartary buckwheat. In the present study, a bHLH transcription factor (TF) FtTT8 was characterized to be homologous with AtTT8 and phylogenetically close to bHLH proteins from other plant species. Subcellular location and yeast two-hybrid assays suggested that FtTT8 locates in the nucleus and plays a role as a transcription factor. Complementation analysis in Arabidopsis tt8 mutant showed that FtTT8 could not recover anthocyanin deficiency but could promote PAs accumulation. Overexpression of FtTT8 in red-flowering tobacco showed that FtTT8 inhibits anthocyanin biosynthesis and accelerates proanthocyanidin biosynthesis. QRT-PCR and yeast one-hybrid assay revealed that FtTT8 might bind to the promoter of NtUFGT and suppress its expression, while binding to the promoter of NtLAR and upregulating its expression in K326 tobacco. This displayed the bidirectional regulating function of FtTT8 that negatively regulates anthocyanin biosynthesis and positively regulates proanthocyanidin biosynthesis. The results provide new insights on TT8 in Tartary buckwheat, which is inconsistent with TT8 from other plant species, and FtTT8 might be a high-quality gene resource for Tartary buckwheat breeding.


Asunto(s)
Arabidopsis , Fagopyrum , Proantocianidinas , Humanos , Antocianinas/metabolismo , Proantocianidinas/metabolismo , Fagopyrum/genética , Fagopyrum/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Fitomejoramiento , Flavonoides/metabolismo , Plantas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Arabidopsis/genética
13.
Appl Opt ; 62(29): 7773-7782, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37855486

RESUMEN

An off-axis four-mirror optical system has the advantages of a wide field of view (FOV) and a small telephoto ratio. However, it will bring difficulties in assembly and detection. Here we report an off-axis four-mirror free-form telescope with a long focal length and a wide field of view based on two integration mirrors. The initial structure of a coaxial four-mirror optical system is established based on the Seidel aberration theory. A Zernike Fringe free-form surface is introduced to correct aberrations. By gradually increasing the entrance pupil diameter and the FOV, we finally obtain an off-axis four-mirror telescope with a FOV of 0.4∘×20∘, an F-number of 11.5, a long focal length of 2000 mm, and a volume of 360×400×600m m 3. In addition, four mirrors remain coaxially aligned, remarkably facilitating detection and adjustment. The proposed off-axis four-mirror telescope, with double integration mirrors, holds great potential for application in aerospace remote sensing observations.

14.
Artículo en Inglés | MEDLINE | ID: mdl-37903083

RESUMEN

Photodynamic therapy based on fluorescence illumination of subcellular organelles and in situ bursts of reactive oxygen species (ROS) has been recognized as a promising strategy for cancer theranostics. However, the short life of ROS and unclarified anticancer mechanism seriously restrict the application. Herein, we rationally designed and facilely synthesized a 2,6-dimethylpyridine-based triphenylamine (TPA) derivative TPA-DMPy with aggregation-induced emission (AIE) features and production of type-I ROS. Except for its selective binding to the endoplasmic reticulum (ER), TPA-DMPy, in synergy with glibenclamide, a medicinal agent used against diabetes, induced significant apoptosis of cancer cells in vitro and in vivo. Additionally, TPA-DMPy greatly incited the release of calcium from ER upon light irradiation to further aggravate the depolarization of ER membrane potential caused by glibenclamide, thus inducing fatal ER stress and crosstalk between ER and mitochondria. Our study extends the biological design and application of AIE luminogens and provides new insights into discovering novel anticancer targets and agents.

15.
Biomater Sci ; 11(18): 6149-6159, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37548310

RESUMEN

Controlled drug release of nanoparticles was achieved by irreversibly disrupting polymer micelles through high-intensity focused ultrasound (HIFU) induction. An ultrasound-responsive block copolymer was synthesized, comprising an end-functional Eosin Y fluorophore, 2-tetrahydropyranyl acrylate (THPA), and acrylate mannose (MAN). The block copolymer was then self-assembled to produce micelles. The chemotherapy drug dasatinib (DAS) and the sonodynamic therapy agent methylene blue (MB) were encapsulated by the self-assembly of the block copolymer. This targeted nanoparticle enables sonodynamic therapy through high-intensity focused ultrasound while triggering nanoparticle disassembly for controlled drug release. The ultrasound-mediated, non-invasive strategy provides external spatiotemporal control for targeted tumour treatment.


Asunto(s)
Micelas , Neoplasias , Humanos , Sistemas de Liberación de Medicamentos , Polímeros , Ultrasonografía , Liberación de Fármacos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
16.
Front Med (Lausanne) ; 10: 1169504, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554506

RESUMEN

To evaluate the early changes in ganglion cell-inner plexiform layer thickness and macular microvasculature in Posner-Schlossman syndrome (PSS) with a binocular control study involving optical coherence tomography angiography (OCTA). Twenty-six patients with unilateral PSS were included in this cross-sectional study. All subjects underwent a thorough ocular examination. Macular ganglion cell-inner plexiform layer (mGCIPL) and superficial macular microvasculature measurements, including vessel density (VD), perfusion density (PD) and the foveal avascular zone (FAZ), were recorded. In PSS-affected eyes, the mGCIPL thickness was significantly lower in all quadrants than in the contralateral eyes (all p < 0.05). Significant macular microvascular damage was found in the PSS-affected eyes, including whole-image VD (wiVD), wiPD, perifoveal VD (periVD) and periPD (all p < 0.05); but there was no obvious difference in parafoveal VD (paraVD), paraPD and FAZ parameters (all p > 0.05). In addition, a decreased wiVD and wiPD were significantly correlated with a smaller mGCIPL thickness and a decreased MD (all p < 0.05). These parameters may contribute to the early detection of glaucomatous damage and timely supervision of disease progression in PSS.

17.
Sci Total Environ ; 857(Pt 1): 159334, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36220474

RESUMEN

Efficient water transport is crucial for plant growth and survival. Plant hydraulic conductivity varies between functional groups and biomes and is strongly influenced by changing environmental conditions. However, correlations of conductivity-related hydraulic traits with climatic variables are not fully understood, preventing clarification of plant form and function under climate change scenarios. By compiling leaf-specific hydraulic conductivity (KL), sapwood-specific hydraulic conductivity (Ks), and Huber values (Hv, sapwood area to leaf area ratio) along with climatic variables including mean annual temperature (MAT), mean annual precipitation (MAP) and aridity index (AI) for 428 species across a wide range of plant functional types (PFTs) and biomes at a global scale, we found greater variability of KL within PFTs and biomes than across PFTs and biomes. Interaction effects between PFTs and biomes on KL and Ks were found. The interaction between MAT and MAP played a significant role in Ks and Hv (t = 3.89, P < 0.001 for Ks and t = -5.77, P < 0.001 for Hv). With increasing AI, Ks increased and Hv decreased. KL was not influenced by the investigated climatic variables. Our study provides a better understanding of the dynamics of hydraulic structure and function across functional groups and biomes and of the abiotic drivers of their large-scale variations.


Asunto(s)
Hojas de la Planta , Agua , Plantas , Temperatura , Conductividad Eléctrica , Árboles
18.
Int J Behav Med ; 30(2): 260-267, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35459983

RESUMEN

BACKGROUND: Bedtime procrastination (BP), a special type of health behavior procrastination, is considered to be a failure of self-control. Notably, self-control may mediate the effect of trait anxiety on general procrastination. However, there is no evidence demonstrating the role of self-control in the relationship between trait anxiety and BP. Moreover, the association between BP and trait anxiety has not yet been thoroughly studied. Therefore, the present study aimed to explore the direct relationship between them as well as the mediating role of self-control in this relationship. METHODS: This cross-sectional survey included 718 college students enrolled in Chinese universities between October 2018 and January 2020. The Chinese versions of the Bedtime Procrastination Scale, the Self-Control Scale, and the Trait Anxiety Inventory were used to evaluate BP, self-control, and trait anxiety, respectively. RESULTS: Multiple linear regression analysis revealed trait anxiety independently predicted BP while controlling for demographic characteristics. Correlation analyses showed that BP was positively correlated with trait anxiety, but negatively related to self-control. Structural equation modeling further revealed a mediating role of self-control in the relationship between trait anxiety and BP. CONCLUSIONS: Trait anxiety is a significant independent predictor of BP and may induce BP directly or indirectly through the effect of self-control. These findings provide a deeper understanding of the relationship between trait anxiety and BP and the underlying mechanism by exploring the mediating effect of self-control. As such, trait anxiety and self-control should be included in prevention and intervention strategies to address BP behavior in college students.


Asunto(s)
Procrastinación , Autocontrol , Humanos , Estudios Transversales , Ansiedad , Estudiantes
19.
Front Genet ; 13: 1037190, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452155

RESUMEN

Osteonecrosis of the femoral head (ONFH) is a potentially disabling orthopedic condition that requires total hip arthroplasty in most late-stage cases. However, mechanisms underlying the development of ONFH remain unknown, and the therapeutic strategies remain limited. Growth factors play a crucial role in different physiological processes, including cell proliferation, invasion, metabolism, apoptosis, and stem cell differentiation. Recent studies have reported that polymorphisms of growth factor-related genes are involved in the pathogenesis of ONFH. Tissue and genetic engineering are attractive strategies for treating early-stage ONFH. In this review, we summarized dysregulated growth factor-related genes and their role in the occurrence and development of ONFH. In addition, we discussed their potential clinical applications in tissue and genetic engineering for the treatment of ONFH.

20.
Funct Integr Genomics ; 22(6): 1449-1458, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36369301

RESUMEN

Tartary buckwheat is among the valuable crops, utilized as both food and Chinese herbal medicine. To uncover the accumulation dynamics of the main nutrients and their regulatory mechanism of Tartary buckwheat seeds, microscopic observations and nutrient analysis were conducted which suggested that starch, proteins as well as flavonoid gradually accumulated among seed development. Comparative proteomic analysis of rice Tartary buckwheat at three different developmental stages was performed. A total of 78 protein spots showed differential expression with 74 of them being successfully identified by MALDI-TOF/TOF MS. Among them, granule bound starch synthase (GBSS1) might be the critical enzyme that determines starch biosynthesis, while 11 S seed storage protein and vicilin seemed to be the main globulin and affect seed storage protein accumulation in Tartary buckwheat seeds. Two enzymes, flavanone 3-hydroxylase (F3H) and anthocyanidin reductase (ANR), involved in the flavonoid biosynthesis pathway were identified. Further analysis on the expression profiles of flavonoid biosynthetic genes revealed that F3H might be the key enzyme that promote flavonoid accumulation. This study provides insights into the mechanism of nutrition accumulation at the protein level in Tartary buckwheat seeds and may facilitate in the breeding and enhancement of Tartary buckwheat germplasm.


Asunto(s)
Fagopyrum , Fagopyrum/genética , Fagopyrum/metabolismo , Proteómica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Semillas , Proteínas de Almacenamiento de Semillas/genética , Almidón/metabolismo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...