Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Nucl Med Mol Imaging ; 14(1): 13-21, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500747

RESUMEN

Tumors are often with complex and heterogeneous biological processes, such as glycometabolism and fibrosis, which are the main biochemical pathways that determine therapeutic effects. Specifically, this study aims to assess the diagnosing performance of 18F-FDG and 68Ga-FAPI-04 PET for different stages of progressive bone metastases with PSMA-negative pathology. Bone metastatic mouse model of prostate cancer was constructed via intra-bone injection of PSMA-negative prostate cancer PC3 cells. Cellular uptakes of 18F-FDG and 68Ga-FAPI-04 were separately performed on PC3, NIH-3T3 (FAP-positive) and a mixture. 68Ga-PSMA-11, 18F-FDG and 68Ga-FAPI-04 PET/CT imaging were performed at 2, 4 weeks after tumor cell transplantation. Furthermore, PSMA and FAP expression in bone metastases were assessed by immunohistochemistry, and then compared with the imageological findings. On the cellular level, the independent tracer uptake on the basis of glycometabolism and fibrosis was observed. For animal imaging, 68Ga-PSMA-11 imaging showed weak or absent tracer uptake in PSMA-negative bone metastatic lesions. In contrast, 68Ga-FAPI-04 PET of bone metastases had a higher uptake and tumor-to-muscle (T/M) ratio than 18F-FDG PET that was relative steady during the observation, but T/M ratio of fibrosis gradually decreased with increasing tumor growth, which ranged from 5.11 ± 1.26 at 2 weeks to 3.54 ± 0.23 at 4 weeks, revealing the delayed formation of tumor stroma in rapid proliferation. In addition, PET imaging results were corroborated by immunohistochemical assessment. In conclusion, molecular imaging approach revealed the heterogeneous progression of tumor cells and tumor stroma of bone metastasis of prostate cancer, and further confirming the necessity of multi-molecular imaging in cancer imaging.

2.
Acta Pharmacol Sin ; 45(2): 422-435, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37816856

RESUMEN

Extracellular regulated protein kinases 1/2 (ERK1/2) are key members of multiple signaling pathways, including the ErbB axis. Ectopic ERK1/2 activation contributes to various types of cancer, especially drug resistance to inhibitors of RTK, RAF and MEK, and specific ERK1/2 inhibitors are scarce. In this study, we identified a potential novel covalent ERK inhibitor, Laxiflorin B, which is a herbal compound with anticancer activity. However, Laxiflorin B is present at low levels in herbs; therefore, we adopted a semi-synthetic process for the efficient production of Laxiflorin B to improve the yield. Laxiflorin B induced mitochondria-mediated apoptosis via BAD activation in non-small-cell lung cancer (NSCLC) cells, especially in EGFR mutant subtypes. Transcriptomic analysis suggested that Laxiflorin B inhibits amphiregulin (AREG) and epiregulin (EREG) expression through ERK inhibition, and suppressed the activation of their receptors, ErbBs, via a positive feedback loop. Moreover, mass spectrometry analysis combined with computer simulation revealed that Laxiflorin B binds covalently to Cys-183 in the ATP-binding pocket of ERK1 via the D-ring, and Cys-178 of ERK1 through non-inhibitory binding of the A-ring. In a NSCLC tumor xenograft model in nude mice, Laxiflorin B also exhibited strong tumor suppressive effects with low toxicity and AREG and EREG were identified as biomarkers of Laxiflorin B efficacy. Finally, Laxiflorin B-4, a C-6 analog of Laxiflorin B, exhibited higher binding affinity for ERK1/2 and stronger tumor suppression. These findings provide a new approach to tumor inhibition using natural anticancer compounds.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Receptores ErbB , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Sistema de Señalización de MAP Quinasas , Ratones Desnudos , Simulación por Computador , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mutación , Línea Celular Tumoral
3.
Chem Commun (Camb) ; 60(6): 686-689, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38054347

RESUMEN

Covalent proteolysis-targeting chimeras (PROTACs) offer enhanced selectivity, prolonged action, and increased efficacy against challenging target proteins. The conventional approach relies on covalent ligands, but our study presents an innovative method employing an N-sulfonyl pyridone warhead to selectively target tyrosine (Tyr) residues. The von Hippel-Lindau (VHL) moiety is transferred from the warhead to the exposed Tyr, allowing us to design a STING degrader (DC50 0.53 µM, Dmax 56.65%). This approach showcases the potential of nucleophilic amino acid labeling probes, particularly for proteins lacking easily accessible cysteine residues, opening new possibilities for covalent PROTAC design and targeted protein degradation therapies.


Asunto(s)
Piridonas , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Proteolisis
4.
Anal Chem ; 95(46): 17125-17134, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37934015

RESUMEN

Cell surface proteins (CSPs) are valuable targets for therapeutic agents, but achieving highly selective CSP enrichment in cellular physiology remains a technical challenge. To address this challenge, we propose a newly developed sulfo-pyridinium ester (SPE) cross-linking probe, followed by two-step imaging and enrichment. The SPE probe showed higher efficiency in labeling proteins than similar NHS esters at the level of cell lysates and demonstrated specificity for Lys in competitive experiments. More importantly, this probe could selectively label the cell membranes in cell imaging with only negligible labeling of the intracellular compartment. Moreover, we successfully performed this strategy on MCF-7 live cells to label 425 unique CSPs from 1162 labeled proteins. Finally, we employed our probe to label the CSPs of insulin-cultured MCF-7, revealing several cell surface targets of key functional biomarkers and insulin-associated pathogenesis. The above results demonstrate that the SPE method provides a promising tool for the selective labeling of cell surface proteins and monitoring transient cell surface events.


Asunto(s)
Insulinas , Proteoma , Humanos , Proteoma/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Células MCF-7
5.
J Med Chem ; 66(22): 15409-15423, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37922441

RESUMEN

Lysine-specific demethylase 1 (LSD1) is a promising therapeutic target, especially in cancer treatment. Despite several LSD1 inhibitors being discovered for the cofactor pocket, none are FDA-approved. We aimed to develop stabilized peptides for irreversible LSD1 binding, focusing on unique cysteine residue Cys360 in LSD1 and SNAIL1. We created LSD1 C360-targeting peptides, like cyclic peptide S9-CMC1, using our Cysteine-Methionine cyclization strategy. S9-CMC1 effectively inhibited LSD1 at the protein level, as confirmed by MS analysis showing covalent bonding to Cys360. In cells, S9-CMC1 inhibited LSD1 activity, increasing H3K4me1 and H3K4me2 levels, leading to G1 cell cycle arrest and apoptosis and inhibiting cell proliferation. Remarkably, S9-CMC1 showed therapeutic potential in A549 xenograft animal models, regulating LSD1 activity and significantly inhibiting tumor growth with minimal organ damage. These findings suggest LSD1 C360 as a promising site for covalent LSD1 inhibitors' development.


Asunto(s)
Cisteína , Neoplasias , Animales , Humanos , Péptidos/farmacología , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/uso terapéutico , Proliferación Celular , Histona Demetilasas/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Línea Celular Tumoral
6.
Sci Rep ; 13(1): 13317, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37587203

RESUMEN

Glioblastoma (GBM) is the most aggressive and lethal primary brain tumor. Conventional treatments have not achieved breakthroughs in improving survival. Therefore, novel molecular targets and biomarkers need to be identified. As signal transduction docks on the cell membrane, tetraspanins (TSPANs) are associated with various tumors; however, research on their role in GBM remains extremely scarce. Gene expression and clinicopathological characteristic data were obtained from GEPIA, CGGA, HPA, cBioPortal, and GSCA databases to analyze the mRNA and protein expression levels, prognostic value, clinical relevance, mutation status, and targeted drug sensitivity of TSPANs in GBM. Gene set enrichment analysis (GSEA), Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used for biological process enrichment. Data from TCGA and TCIA were used to construct the tumor immune microenvironment landscape of TSPANs. Different R software algorithms were used to analyze the immune score, immune cell infiltration, and immune checkpoint correlation. Univariate and multivariate analyses were performed for TSPAN4, which had the most significant predictive prognostic value, and a nomogram model was constructed to predict individual outcomes. The expression and function of TSPAN4 were verified in vitro. TSPAN3/4/6/11/12/18/23/24/25/26/27/28/29/30/31expressions were significantly upregulated in GBM, and TSPAN3/4/6/11/18/24/25/26/29/30 were strongly correlated with prognosis. The expression of multiple TSPANs significantly correlated with 1p/19q co-deletion status, IDH mutation status, recurrence, age, and tumor grade. GSEA and GO analyses revealed the potential contribution of TSPANs in cell adhesion and migration. Immune correlation analysis revealed that TSPANs are related to the formation of the GBM tumor microenvironment (TME) and may influence immunotherapy outcomes. TSPAN4 is an independent prognostic factor and TSPAN4 knockdown has been demonstrated to strongly inhibit glioma cell proliferation, invasion, and migration in vitro. We comprehensively elaborated the prognostic value and potential role of differentially expressed TSPANs in GBM, including molecules that scientists have previously overlooked. This study provides a novel and comprehensive perspective on the pathological mechanisms of GBM and the future direction of individualized tumor immunotherapy, which may be a critical link between GBM malignant progression and TME remodeling.


Asunto(s)
Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Microambiente Tumoral/genética , Pronóstico , Nomogramas
7.
Chem Biol Interact ; 383: 110681, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37648048

RESUMEN

Laxiflorin B is a natural ent-kaurane diterpenoid that can be isolated from the leaves of the Isodon eriocalyx var. laxiflora, a perennial shrub native to parts of China. While this compound has potent cytotoxic activity against various tumor cells, the anti-tumor targets and molecular mechanisms of Laxiflorin B are unclear. Here, we show that Laxiflorin B exhibits strong antiproliferative and proapoptotic effects on triple-negative breast cancer (TNBC) cells. At the mechanistic level, we show that ß-tubulin (TUBB) is a cellular target of Laxiflorin B. By covalently binding the Cys239 and C354 residues of the TUBB colchicine-binding site, Laxiflorin B disturbs microtubule integrity and structure in vitro and in vivo. Cytotoxicity analyses also showed that the α, ß-unsaturated carbonyl in the D ring of Laxiflorin B is responsible for mediating its covalent binding and anti-tumor activity. To assess the therapeutic effects of Laxiflorin B, we synthesized a Laxiflorin B-ALA pro-drug and delivered it by intraperitoneal injection (10 mg/kg) into a 4T1 orthotopic tumor mouse model. Drug treatment had anti-tumor effects without inducing notable weight loss or organ dysfunction. We conclude that Laxiflorin B is a promising colchicine binding site inhibitor that might be exploited in the context of TNBC treatment in the future.


Asunto(s)
Diterpenos de Tipo Kaurano , Neoplasias de la Mama Triple Negativas , Animales , Ratones , Humanos , Tubulina (Proteína) , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Sitios de Unión , Apoptosis , Colchicina/farmacología , Proliferación Celular
8.
Biochem Biophys Res Commun ; 673: 23-28, 2023 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-37354656

RESUMEN

This study aimed to establish the radio-immune imaging protocol on the basis of Avidin/Biotin system. The programmed death-ligand 1 (PD-L1) antibody (Atezolizumab) was employed as the primary molecule in targeting PD-L1, and the two-step strategy, consisting of the first injection of Avidin-conjugated PD-L1 monoclonal antibody (Atezolizumab) and the second injection of 7.4 MBq 68Ga-Biotin with a 60 h interval, was then verified on the colon cancer-bearing mice. PET imaging was performed at 30, 90, 180 min to measure the standard uptake value and tumor to liver ratios. Cellular binding experiments and in vivo distribution showed that the conjugation of Avidin did not affect the affinity of Atezolizumab to PD-L1 antigen. Biotin was radio-labeled with 68Ga with radiolabeling efficiency of 70.5 ± 3.5% and purification was needed to increase the radiochemical purity. For PD-L1-positive tumors, SUVmax was 0.38 ± 0.06 in the Avidin-Atezolizumab pre-treated mice at 90 min; the tumor/liver ratios of pre-targeting group were 1.06 ± 0.19 and 0.97 ± 0.16 at 30 and 90 min, while the absence of pre-treatment of Avidin was of the lower ratios as 0.88 ± 0.01 and 0.54 ± 0.11 when 68Ga-Biotin served as the radiopharmaceutical as well. In conclusion, pre-targeting immunoPET strategy can elevate the target-to-nontarget ratio, decrease the blood background and shorten the interval between injection of radiopharmaceuticals and PET scan, providing a highly PD-L1-specific and sensitive imaging method for the detection of tumorous immune micro-environment.


Asunto(s)
Biotina , Neoplasias del Colon , Ratones , Animales , Avidina , Antígeno B7-H1/metabolismo , Radioisótopos de Galio , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Línea Celular Tumoral , Microambiente Tumoral
9.
Org Lett ; 25(13): 2167-2171, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37026371

RESUMEN

Organic synthesis continues to drive a broad range of research advances in chemistry and related sciences. Another clear trend in organic synthesis research is the increasing desire to target improvements in the quality of life of humankind, new materials, and product specificity. Here, a landscape view of organic synthesis research is provided by analysis of the CAS Content Collection. Three emerging research directions, enzyme catalysis, photocatalysis, and green chemistry in organic synthesis, were identified and featured based on the publication trend analysis.

10.
J Org Chem ; 88(7): 4031-4035, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37026384

RESUMEN

Organic synthesis continues to drive a broad range of research advances in chemistry and related sciences. Another clear trend in organic synthesis research is the increasing desire to target improvements in the quality of life of humankind, new materials, and product specificity. Here, a landscape view of organic synthesis research is provided by analysis of the CAS Content Collection. Three emerging research directions, enzyme catalysis, photocatalysis, and green chemistry in organic synthesis, were identified and featured based on the publication trend analysis.

11.
J Am Chem Soc ; 145(14): 7879-7887, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37001133

RESUMEN

The development of bifunction al molecules, which can enable targeted RNA degradation, targeted protein acetylation, or targeted protein degradation, remains a time-consuming process that requires tedious optimization. We propose a split-and-mix nanoplatform that serves as a self-adjustable platform capable of facile screening, programmable ligand ratios, self-optimized biomolecule spatial recognition, and multifunctional applications. Herein, we demonstrate the potential of our proposed nanoplatform by showcasing proteolysis-targeting chimeras (PROTACs), namely, split-and-mix PROTAC (SM-PROTAC). We highlight the scope of our platform through the targeted disruption of intracellular therapeutic targets involving ERα, CDK4/6, AR, MEK1/2, BRD2/4, BCR-ABL, etc. These studies confirm the effectiveness and universality of the SM-PROTAC platform for proximity-induced applications. This platform is programmable, with significant potential applications to biomolecule regulation, including the fields of epigenetics, gene editing, and biomolecule modification regulation.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteolisis
12.
Med Oncol ; 40(1): 39, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36469173

RESUMEN

The interaction between pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs) promotes aggressive progression of pancreatic cancer, and disrupting the tumor-stromal crosstalk is a promising therapeutic strategy. Integrin α5 (ITGA5) is specifically overexpressed in pancreatic cancer stroma and activated PSCs. ITGA5 acts as a mediator in PCCs-PSCs interaction, but its role in regulating biological behaviors of PSCs and PCCs is still not quite clear. In this study, ITGA5 in PSCs was inhibited using its specific inhibitor AV3 peptide or siRNA knockdown technique. Pancreatic cancer SW1990 cells conditioned medium (SW1990-CM) and an indirect co-culture system were used to mimic the environment of the in vitro tumor-stromal crosstalk. Our results showed that ITGA5 inhibition impaired the proliferation and migration of PSCs, but enhanced autophagy. After co-culture with PSCs, SW1990 cells gained some cancer stem cells (CSCs)-like characteristics, such as increased drug resistance, migration and invasion ability, but PSCs with ITGA5 knockdown were incapable of producing these effects. The present results suggested that ITGA5 was involved in the development of the malignant biological behaviors of PSCs and PCCs, and ITGA5 inhibition in PSCs might benefit the treatment of pancreatic cancer by re-educating PCCs-PSCs interaction.


Asunto(s)
Neoplasias Pancreáticas , Células Estrelladas Pancreáticas , Humanos , Células Estrelladas Pancreáticas/patología , Línea Celular Tumoral , Proliferación Celular , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
13.
ACS Nano ; 16(11): 19509-19522, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36318615

RESUMEN

Peptide-based neoantigen vaccines hold tremendous potential for personalized tumor immunotherapy. However, effective delivery and controllable release of antigen peptides remain major challenges in stimulating robust and sustained immune responses. Programmable DNA nanodevices provide accurate fixed positions for antigens, which are convenient for the calculation of clinical dosage, and hold great potential as precise carriers. Here, a peptide-nucleic acid conjugate was prepared, which was driven by a propargyl sulfonium-based efficient and reversible bio-orthogonal reaction under weakly alkaline conditions, and folded into regular DNA nanodevice vaccines. The well-defined nanoplatform not only exhibits outstanding stability in serum, satisfactory safety, and effective internalization by antigen-presenting cells (RAW264.7 and BMDCs) but also obviously enhances cytokine (TNF-α, IL-6, and IL-12) secretion for further immune response. In vivo, the nanovaccine cooperating with OVA model antigens and CpG adjuvants stimulated an antigen-specific CD8+T cell response, significantly preventing the lung metastases of melanoma. In the B16-OVA tumor-bearing model, the growth inhibition rate of melanoma reached up to 50%. Similarly, the DNA nanodevice with neoantigen induced up to a maximum degree of complete MC-38 tumor regression in 80% of mice, possibly owing to antigen peptide reversible release driven by sulfonium and further cross-presentation. In brief, this study demonstrates that DNA nanodevices with sulfonium centers can provide a precise, biocompatible, and effective co-delivery vaccine platform for tumor immunotherapy and prevention.


Asunto(s)
Vacunas contra el Cáncer , Melanoma , Vacunas , Ratones , Animales , Presentación de Antígeno , Inmunoterapia , Antígenos , Melanoma/tratamiento farmacológico , Péptidos/farmacología , ADN , Ratones Endogámicos C57BL , Células Dendríticas
14.
Front Genet ; 13: 934223, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017491

RESUMEN

N6-methyladenosine (m6A) is the most abundant internal chemical modification of eukaryotic mRNA and plays diverse roles in gene regulation. The m6A modification plays a significant role in numerous cancer types, including kidney, stomach, lung, bladder tumors, and melanoma, through varied mechanisms. As direct m6A readers, the YT521-B homology domain family proteins (YTHDFs) play a key role in tumor transcription, translation, protein synthesis, tumor stemness, epithelial-mesenchymal transition (EMT), immune escape, and chemotherapy resistance. An in-depth understanding of the molecular mechanism of YTHDFs is expected to provide new strategies for tumor treatment. In this review, we provide a systematic description of YTHDF protein structure and its function in tumor progression.

15.
Toxicol Res (Camb) ; 11(3): 498-510, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35782639

RESUMEN

Dezocine, a dual agonist and antagonist of the µ-opioid receptor and κ-opioid receptor, is widely used as an analgesic in China. At present, there are few studies on anti-tumor effects of dezocine, most of which are used to treat cancer pain. However, it has recently been reported that dezocine can induce apoptosis of triple negative breast cancer cells. Dezocine may have some anti-tumor activity, but the effect and potential mechanism of dezocine in the treatment of other types of cancer remain to be fully studied. The purpose of the present study was to investigate the effect of dezocine on human Hela cervical carcinoma cells, and to elucidate the underlying molecular mechanisms. We performed CCK-8 assays, clone formation assays, xenograft, flow cytometry analysis, western blot and RNA-seq analysis to evaluate the effects of dezocine on Hela cells. In addition, the role of endoplasmic reticulum (ER) stress in dezocine-induced apoptosis was investigated using qPCR and western blot analysis. Dezocine inhibited Hela cell viability in dose-dependent and time-dependent manners, and notably did not achieve this effect by targeting the opioid receptors. Further mechanistic studies demonstrated that dezocine activated ER stress by upregulating the expression of GRP78, IRE1 and p-JNK, and that dezocine-induced apoptosis was attenuated when the ER stress pathway was blocked. Our results provide a foundation to support the redefinition of dezocine as a novel, adjuvant treatment for patients with cervical cancer, although further research will be required to support its application in clinical practice.

16.
Front Genet ; 13: 918509, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812730

RESUMEN

Epigenetic modifications are essential mechanism by which to ensure cell homeostasis. One such modification is lysine methylation of nonhistone proteins by SETD7, a mono-methyltransferase containing SET domains. SETD7 methylates over 30 proteins and is thus involved in various classical pathways. As such, SETD7 has been implicated in both the basic functions of normal tissues but also in several pathologies, such as cancers. In this review, we summarize the current knowledge of SETD7 substrates, especially transcriptional-related proteins and enzymes, and their putative roles upon SETD7-mediated methylation. We focus on the role of SETD7 in cancers, and speculate on the possible points of intervention and areas for future research.

17.
J Med Virol ; 94(10): 4878-4889, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35754185

RESUMEN

A transocular infection has been proved as one of the main approaches that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) invades the body, and angiotensin-converting enzyme 2 (ACE2) plays a key role in this procedure. Dynamic and quantitative details on virus distribution are lacking for virus prevention and drug design. In this study, a radiotraceable pseudovirus packed with an enhanced green fluorescent protein (EGFP) gene, 125 I-CoV, was prepared and inoculated in the unilateral eye of humanized ACE2 (hACE2) mice or ACE2-knockout (ACE2-KO) mice. Single-photon emission computed tomography/computed tomography images were acquired at multiple time points to exhibit ACE2-dependent procedures from invasion to clearance. Positron emission tomography (PET) and western blot were performed to quantify ACE2 expression and verify the factors affecting transocular infection. For the transocular infection of coronavirus (CoV), the renin-angiotensin-aldosterone system (RAAS), lungs, intestines, and genital glands were the main targeted organs. Due to the specific anchor to ACE2-expressed host cells, virus concentrations in genital glands, liver, and lungs ranked the top three most and stabilized at 3.75 ± 0.55, 3.30 ± 0.25, and 2.10 ± 0.55% inoculated dose (ID)/mL at 48 h post treatment. Meanwhile, ACE2-KO mice had already completed the in vivo clearance. In consideration of organ volumes, lungs (14.50 ± 3.75%ID) and liver (10.94 ± 0.71%ID) were the main in-store reservoirs of CoV. However, the inoculated eye (5.52 ± 1.85%ID for hACE2, 5.24 ± 1.45%ID for ACE2-KO, p > 0.05) and the adjacent brain exhibited ACE2-independent virus infection at the end of 72 h observation, and absolute amount of virus played a key role in host cell infection. These observations on CoV infection were further manifested by infection-driven intracellular EGFP expression. ACE2 PET revealed an infection-related systematic upregulation of ACE2 expression in the organs involved in RAAS (e.g., brain, lung, heart, liver, and kidney) and the organ that was of own local renin-angiotensin system (e.g., eye). Transocular infection of CoV is ACE2-dependent and constitutes the cause of disturbed ACE2 expression in the host. The brain, genital glands, and intestines were of the highest unit uptake, potentially accounting for the sequelae. Lungs and liver were of the highest absolute amount, closely related to the respiratory diffusion and in vivo duplication. ACE2 expression was upregulated in the short term after infection with CoV. These visual and quantitative results are helpful to fully understanding the transocular path of SARS-CoV-2 and other CoVs.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Infecciones Virales del Ojo , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/diagnóstico por imagen , COVID-19/genética , COVID-19/metabolismo , Infecciones Virales del Ojo/genética , Infecciones Virales del Ojo/metabolismo , Infecciones Virales del Ojo/virología , Ratones , Imagen Molecular , Peptidil-Dipeptidasa A/genética , SARS-CoV-2
18.
Org Lett ; 24(19): 3532-3537, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35546524

RESUMEN

The diversity of cyclic peptides was expanded by elaborating Mitsunobu macrocyclization, tethering various hydroxy acid building blocks with different Nε-amine substituents. This new strategy was then applied in synthesizing peptidomimetic estrogen receptor modulator (PERM) analogs on the solid support. The PERM analogs exhibited increased serum peptidase stability, cell penetration, and estrogen receptor α binding affinity. Studying diversity-oriented methods for preparing azacyclopeptides provides a new tool for macrocycle construction and further structural information for optimizing ERα modulators for ER positive breast cancers.


Asunto(s)
Neoplasias de la Mama , Peptidomiméticos , Neoplasias de la Mama/metabolismo , Receptor alfa de Estrógeno/química , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Péptidos Cíclicos , Unión Proteica
19.
PLoS One ; 15(8): e0237827, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32813743

RESUMEN

It is vast significance to explore the spatial and temporal evolution characteristics and influencing factors of herbivorous animal husbandry industry based on the context of China's agriculture pursuing high-quality development. In this paper, we analyze the spatial and temporal evolution of the layout of China's herbivorous animal husbandry industry and its influencing factors based on the spatial autocorrelation analysis, standard deviation ellipse, and spatial Durbin model with data from 1980 to 2017. The results show that there are significant positive autocorrelation characteristics of "high-high" aggregation and "low-low" aggregation in the Chinese herbivorous animal husbandry industry. To be specific, in the past four decades, the spatial distribution center of China's herbivorous animal husbandry industry has moved towards the northeast, crossing the boundary between agriculture and animal husbandry in China, presenting a clear trend of moving from pastoral area to agricultural area; the gradual narrowing of the spatial distribution range indicates the gradually increased degree of aggregation within the industry; the east-west stretch of spatial distribution has been strengthened, and the azimuth angle shows clockwise change, suggesting that the industrial expansion in the northeast-southwest direction is prominent; the influencing factors of changes in the spatial distribution of the industry reveal that the quantity and production capacity of productive land, people's income and living standards, and the level of mechanization will promote the development of China's herbivorous animal husbandry industry, and are essential factors influencing industrial distribution and transfer, while policy factor has small or even not significant impact on industrial aggregation, reflecting that the policy has not played the expected role, and policy support needs to be further intensified.


Asunto(s)
Crianza de Animales Domésticos , Herbivoria/fisiología , Industrias , Análisis Espacio-Temporal , Agricultura , Animales , China , Análisis Factorial , Geografía , Modelos Econométricos , Políticas , Análisis de Regresión , Análisis Espacial , Factores de Tiempo
20.
Theranostics ; 10(17): 7906-7920, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32685028

RESUMEN

Background: Capsaicin is an active compound found in plants of the Capsicum genus; it has a range of therapeutic benefits, including anti-tumor effects. Here we aimed to delineate the inhibitory effects of capsaicin on nasopharyngeal carcinoma (NPC). Methods: The anti-cancer effects of capsaicin were confirmed in NPC cell lines and xenograft mouse models, using CCK-8, clonogenic, wound-healing, transwell migration and invasion assays. Co-immunoprecipitation, western blotting and pull-down assays were used to determine the effects of capsaicin on the MKK3-p38 axis. Cell proliferation and EMT marker expression were monitored in MKK3 knockdown (KD) or over-expression NPC cell lines treated with or without capsaicin. Finally, immunohistochemistry was performed on NPC specimens from NPC patients (n = 132) and the clinical relevance was analyzed. Results: Capsaicin inhibited cell proliferation, mobility and promoted apoptosis in NPC cells. Then we found that capsaicin directly targets p38 for dephosphorylation. As such, MKK3-induced p38 activation was inhibited by capsaicin. Furthermore, we found that capsaicin-induced inhibition of cell motility was mediated by fucokinase. Xenograft models demonstrated the inhibitory effects of capsaicin treatment on NPC tumor growth in vivo, and analysis of clinical NPC samples confirmed that MKK3 phosphorylation was associated with NPC tumor growth and lymphoid node metastasis. Conclusions: The MKK3-p38 axis represents a potential therapeutic target for capsaicin. MKK3 phosphorylation might serve as a biomarker to identify NPC patients most likely to benefit from adjunctive capsaicin treatment.


Asunto(s)
Capsaicina/farmacología , MAP Quinasa Quinasa 3/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Animales , Capsaicina/uso terapéutico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , MAP Quinasa Quinasa 3/genética , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Persona de Mediana Edad , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/patología , Invasividad Neoplásica/patología , Invasividad Neoplásica/prevención & control , Fosforilación/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...