Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Bacteriol ; 204(12): e0028722, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36374114

RESUMEN

Group A streptococcus (GAS) is a Gram-positive human bacterial pathogen responsible for more than 700 million infections annually worldwide. Beta-lactam antibiotics are the primary agents used to treat GAS infections. Naturally occurring GAS clinical isolates with decreased susceptibility to beta-lactam antibiotics attributed to mutations in PBP2X have recently been documented. This prompted us to perform a genome-wide screen to identify GAS genes that alter beta-lactam susceptibility in vitro. Using saturated transposon mutagenesis, we screened for GAS gene mutations conferring altered in vitro susceptibility to penicillin G and/or ceftriaxone, two beta-lactam antibiotics commonly used to treat GAS infections. In the aggregate, we found that inactivating mutations in 150 GAS genes are associated with altered susceptibility to penicillin G and/or ceftriaxone. Many of the genes identified were previously not known to alter beta-lactam susceptibility or affect cell wall biosynthesis. Using isogenic mutant strains, we confirmed that inactivation of clpX (Clp protease ATP-binding subunit) or cppA (CppA proteinase) resulted in decreased in vitro susceptibility to penicillin G and ceftriaxone. Deletion of murA1 (UDP-N-acetylglucosamine 1-carboxyvinyltransferase) conferred increased susceptibility to ceftriaxone. Our results provide new information about the GAS genes affecting susceptibility to beta-lactam antibiotics. IMPORTANCE Beta-lactam antibiotics are the primary drugs prescribed to treat infections caused by group A streptococcus (GAS), an important human pathogen. However, the molecular mechanisms of GAS interactions with beta-lactam antibiotics are not fully understood. In this study, we performed a genome-wide mutagenesis screen to identify GAS mutations conferring altered susceptibility to beta-lactam antibiotics. In the aggregate, we discovered that mutations in 150 GAS genes were associated with altered beta-lactam susceptibility. Many identified genes were previously not known to alter beta-lactam susceptibility or affect cell wall biosynthesis. Our results provide new information about the molecular mechanisms of GAS interaction with beta-lactam antibiotics.


Asunto(s)
Ceftriaxona , Streptococcus pneumoniae , Humanos , Proteínas de Unión a las Penicilinas/genética , Streptococcus pneumoniae/genética , Penicilina G , beta-Lactamas/farmacología , Monobactamas , Mutagénesis , Antibacterianos/farmacología , Resistencia betalactámica/genética , Pruebas de Sensibilidad Microbiana
2.
Am J Pathol ; 192(10): 1397-1406, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35843262

RESUMEN

All tested strains of Streptococcus pyogenes (group A streptococcus, GAS) remain susceptible to penicillin. However, GAS strains with amino acid substitutions in penicillin-binding proteins that confer decreased susceptibility to beta-lactam antibiotics have been identified recently. This discovery raises concerns about emergence of beta-lactam antibiotic resistance in GAS. Whole genome sequencing recently identified GAS strains with a chimeric penicillin-binding protein 2X (PBP2X) containing a recombinant segment from Streptococcus dysgalactiae subspecies equisimilis (SDSE). To directly test the hypothesis that the chimeric SDSE-like PBP2X alters beta-lactam susceptibility in vitro and fitness in vivo, an isogenic mutant strain was generated and virulence assessed in a mouse model of necrotizing myositis. Compared with naturally occurring and isogenic strains with a wild-type GAS-like PBP2X, strains with the chimeric SDSE-like PBP2X had reduced susceptibility in vitro to nine beta-lactam antibiotics. In a mouse model of necrotizing myositis, the strains had identical fitness in the absence of benzylpenicillin treatment. However, mice treated intermittently with a subtherapeutic dose of benzylpenicillin had significantly more colony-forming units recovered from limbs infected with strains with the chimeric SDSE-like PBP2X. These results show that mutations such as the PBP2X chimera may result in significantly decreased beta-lactam susceptibility and increased fitness and virulence. Expanded diagnostic laboratory surveillance, genome sequencing, and molecular pathogenesis study of potentially emergent beta-lactam antibiotic resistance among GAS are needed.


Asunto(s)
Fascitis Necrotizante , Miositis , Animales , Antibacterianos/farmacología , Ratones , Penicilina G , Proteínas de Unión a las Penicilinas/genética , Penicilinas/farmacología , Proteínas Recombinantes de Fusión , Streptococcus pneumoniae , Streptococcus pyogenes/genética , beta-Lactamas/farmacología
3.
mBio ; 13(1): e0361821, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35038921

RESUMEN

Identification of genetic polymorphisms causing increased antibiotic resistance in bacterial pathogens traditionally has proceeded from observed phenotype to defined mutant genotype. The availability of large collections of microbial genome sequences that lack antibiotic susceptibility metadata provides an important resource and opportunity to obtain new information about increased antimicrobial resistance by a reverse genotype-to-phenotype bioinformatic and experimental workflow. We analyzed 26,465 genome sequences of Streptococcus pyogenes, a human pathogen causing 700 million infections annually. The population genomic data identified amino acid changes in penicillin-binding proteins 1A, 1B, 2A, and 2X with signatures of evolution under positive selection as potential candidates for causing decreased susceptibility to ß-lactam antibiotics. Construction and analysis of isogenic mutant strains containing individual amino acid replacements in penicillin-binding protein 2X (PBP2X) confirmed that the identified residues produced decreased susceptibility to penicillin. We also discovered the first chimeric PBP2X in S. pyogenes and show that strains containing it have significantly decreased ß-lactam susceptibility. The novel integrative reverse genotype-to-phenotype strategy presented is broadly applicable to other pathogens and likely will lead to new knowledge about antimicrobial agent resistance, a massive public health problem worldwide. IMPORTANCE The recent demonstration that naturally occurring amino acid substitutions in Streptococcus pyogenes PBP2X are sufficient to cause severalfold reduced susceptibility to multiple ß-lactam antibiotics in vitro raises the concern that these therapeutic agents may become compromised. Substitutions in PBP2X are common first-step mutations that, with the incremental accumulation of additional adaptive mutations within the PBPs, can result in high-level resistance. Because ß-lactam susceptibility testing is not routinely performed, the nature and extent of such substitutions within the PBPs of S. pyogenes are poorly characterized. To address this knowledge deficit, polymorphisms in the PBPs were identified among the most comprehensive cohort of S. pyogenes genome sequences investigated to date. The mutational processes and selective forces acting on the PBPs were assessed to identify specific substitutions likely to influence ß-lactam susceptibility and to evaluate factors posited to be impediments to resistance emergence.


Asunto(s)
Antiinfecciosos , Streptococcus pyogenes , Humanos , Streptococcus pyogenes/genética , Streptococcus pneumoniae/genética , Genética Inversa , Proteínas de Unión a las Penicilinas/genética , beta-Lactamas , Polimorfismo Genético , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Resistencia betalactámica/genética
4.
J Bacteriol ; 203(17): e0023421, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34124943

RESUMEN

High-molecular-mass penicillin-binding proteins (PBPs) are enzymes that catalyze the biosynthesis of bacterial cell wall peptidoglycan. The Gram-positive bacterial pathogen Streptococcus agalactiae (group B streptococcus [GBS]) produces five high-molecular-mass PBPs, namely, PBP1A, PBP1B, PBP2A, PBP2B, and PBP2X. Among these, only PBP2X is essential for cell viability, whereas the other four PBPs are individually dispensable. The biological function of the four nonessential PBPs is poorly characterized in GBS. We deleted the pbp1a, pbp1b, pbp2a, and pbp2b genes individually from a genetically well-characterized serotype V GBS strain and studied the phenotypes of the four isogenic mutant strains. Compared to the wild-type parental strain, (i) none of the pbp isogenic mutant strains had a significant growth defect in Todd-Hewitt broth supplemented with 0.2% yeast extract (THY) rich medium, (ii) isogenic mutant Δpbp1a and Δpbp1b strains had significantly increased susceptibility to penicillin and ampicillin, and (iii) isogenic mutant Δpbp1a and Δpbp2b strains had significantly longer chain lengths. Using saturated transposon mutagenesis and transposon insertion site sequencing, we determined the genes essential for the viability of the wild-type GBS strain and each of the four isogenic pbp deletion mutant strains in THY rich medium. The pbp1a gene is essential for cell viability in the pbp2b deletion background. Reciprocally, pbp2b is essential in the pbp1a deletion background. Moreover, the gene encoding RodA, a peptidoglycan polymerase that works in conjunction with PBP2B, is also essential in the pbp1a deletion background. Together, our results suggest functional overlap between PBP1A and the PBP2B-RodA complex in GBS cell wall peptidoglycan biosynthesis. IMPORTANCE High-molecular-mass penicillin-binding proteins (HMM PBPs) are enzymes required for bacterial cell wall biosynthesis. Bacterial pathogen group B streptococcus (GBS) produces five distinct HMM PBPs. The biological functions of these proteins are not well characterized in GBS. In this study, we performed a comprehensive deletion analysis of genes encoding HMM PBPs in GBS. We found that deleting certain PBP-encoding genes altered bacterial susceptibility to beta-lactam antibiotics, cell morphology, and the essentiality of other enzymes involved in cell wall peptidoglycan synthesis. The results of our study shed new light on the biological functions of PBPs in GBS.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Streptococcus agalactiae/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/química , Eliminación de Gen , Mutagénesis , Mutagénesis Insercional , Proteínas de Unión a las Penicilinas/química , Penicilinas/farmacología , Streptococcus agalactiae/efectos de los fármacos , Streptococcus agalactiae/genética , Streptococcus agalactiae/crecimiento & desarrollo
5.
J Bacteriol ; 202(23)2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32958630

RESUMEN

Streptococcus agalactiae (group B streptococcus [GBS]) is a major cause of infections in newborns, pregnant women, and immunocompromised patients. GBS strain CNCTC10/84 is a clinical isolate that has high virulence in animal models of infection and has been used extensively to study GBS pathogenesis. Two unusual features of this strain are hyperhemolytic activity and hypo-CAMP factor activity. These two phenotypes are typical of GBS strains that are functionally deficient in the CovR-CovS two-component regulatory system. A previous whole-genome sequencing study found that strain CNCTC10/84 has intact covR and covS regulatory genes. We investigated CovR-CovS regulation in CNCTC10/84 and discovered that a single-nucleotide insertion in a homopolymeric tract in the covR promoter region underlies the strong hemolytic activity and weak CAMP activity of this strain. Using isogenic mutant strains, we demonstrate that this single-nucleotide insertion confers significantly decreased expression of covR and covS and altered expression of CovR-CovS-regulated genes, including that of genes encoding ß-hemolysin and CAMP factor. This single-nucleotide insertion also confers significantly increased GBS survival in human whole blood ex vivoIMPORTANCE Group B streptococcus (GBS) is the leading cause of neonatal sepsis, pneumonia, and meningitis. GBS strain CNCTC10/84 is a highly virulent blood isolate that has been used extensively to study GBS pathogenesis for over 20 years. Strain CNCTC10/84 has an unusually strong hemolytic activity, but the genetic basis is unknown. In this study, we discovered that a single-nucleotide insertion in an intergenic homopolymeric tract is responsible for the elevated hemolytic activity of CNCTC10/84.


Asunto(s)
Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica , Hemólisis , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Humanos , Fenotipo , Mutación Puntual , Regiones Promotoras Genéticas , Infecciones Estreptocócicas/sangre , Streptococcus agalactiae/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
6.
Infect Immun ; 88(10)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32747604

RESUMEN

Streptococcus agalactiae (group B streptococcus, or GBS) is a common cause of bacteremia and sepsis in newborns, pregnant women, and immunocompromised patients. The molecular mechanisms used by GBS to survive and proliferate in blood are not well understood. Here, using a highly virulent GBS strain and transposon-directed insertion site sequencing (TraDIS), we performed genome-wide screens to discover novel GBS genes required for bacterial survival in human whole blood and plasma. The screen identified 85 and 41 genes that are required for GBS growth in whole blood and plasma, respectively. A common set of 29 genes was required in both whole blood and plasma. Targeted gene deletion confirmed that (i) genes encoding methionine transporter (metP) and manganese transporter (mtsA) are crucial for GBS survival in whole blood and plasma, (ii) gene W903_1820, encoding a small multidrug export family protein, contributes significantly to GBS survival in whole blood, (iii) the shikimate pathway gene aroA is essential for GBS growth in whole blood and plasma, and (iv) deletion of srr1, encoding a fibrinogen-binding adhesin, increases GBS survival in whole blood. Our findings provide new insight into the GBS-host interactions in human blood.


Asunto(s)
Bacteriemia/microbiología , Genes Bacterianos , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/genética , Proteínas Bacterianas/genética , Aptitud Genética , Genoma Bacteriano/genética , Humanos , Viabilidad Microbiana/genética , Mutagénesis Insercional , Mutación , Streptococcus agalactiae/crecimiento & desarrollo , Streptococcus agalactiae/patogenicidad , Virulencia/genética
7.
Virulence ; 11(1): 1090-1107, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32842850

RESUMEN

The virulence behaviors of many Gram-negative bacterial pathogens are governed by quorum-sensing (QS), a hierarchical system of gene regulation that relies on population density by producing and detecting extracellular signaling molecules. Although extensively studied under in vitro conditions, adaptation of QS system to physiologically relevant host environment is not fully understood. In this study, we investigated the influence of lung environment on the regulation of Pseudomonas aeruginosa virulence factors by QS in a mouse model of acute pneumonia. When cultured under laboratory conditions in lysogeny broth, wild-type P. aeruginosa strain PAO1 began to express QS-regulated virulence factors elastase B (LasB) and rhamnolipids (RhlA) during transition from late-exponential into stationary growth phase. In contrast, during acute pneumonia as well as when cultured in mouse bronchial alveolar lavage fluids (BALF), exponential phase PAO1 bacteria at low population density prematurely expressed QS regulatory genes lasI-lasR and rhlI-rhlR and their downstream virulence genes lasB and rhlA. Further analysis indicated that surfactant phospholipids were the primary components within BALF that induced the synthesis of N-(3-oxododecanoyl)-L-homoserine lactone (C12-HSL), which triggered premature expression of LasB and RhlA. Both phenol extraction and phospholipase A2 digestion abolished the ability of mouse BALF to promote LasB and RhlA expression. In contrast, provision of the major surfactant phospholipid dipalmitoylphosphatidylcholine (DPPC) restored the expression of both virulence factors. Collectively, our study demonstrates P. aeruginosa modulates its QS to coordinate the expression of virulence factors during acute pneumonia by recognizing pulmonary surfactant phospholipids.


Asunto(s)
Fosfolípidos/metabolismo , Pseudomonas aeruginosa/patogenicidad , Percepción de Quorum , Factores de Virulencia/genética , Animales , Proteínas Bacterianas/genética , Estudios de Cohortes , Femenino , Regulación Bacteriana de la Expresión Génica , Masculino , Ratones , Neumonía Bacteriana/microbiología , Pseudomonas aeruginosa/genética , Surfactantes Pulmonares/metabolismo , Virulencia/genética , Factores de Virulencia/metabolismo
8.
J Clin Microbiol ; 58(9)2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32522827

RESUMEN

Resistance to macrolide antibiotics is a global concern in the treatment of Streptococcus pyogenes (group A Streptococcus [GAS]) infections. In Iceland, since the detection of the first macrolide-resistant isolate in 1998, three epidemic waves of macrolide-resistant GAS infections have occurred, with peaks in 1999, 2004, and 2008. We conducted whole-genome sequencing of all 1,575 available GAS macrolide-resistant clinical isolates of all infection types collected at the national reference laboratory in Reykjavik, Iceland, from 1998 to 2016. Among 1,515 erythromycin-resistant isolates, 90.3% were of only three emm types, emm4 (n = 713), emm6 (n = 324), and emm12 (n = 332), with each being predominant in a distinct epidemic peak. The antibiotic efflux pump genes, mef(A) and msr(D), were present on chimeric mobile genetic elements in 99.3% of the macrolide-resistant isolates of these emm types. Of note, in addition to macrolide resistance, virtually all emm12 isolates had a single amino acid substitution in penicillin-binding protein PBP2X that conferred a 2-fold increased penicillin G and ampicillin MIC among the isolates tested. We conclude that each of the three large epidemic peaks of macrolide-resistant GAS infections occurring in Iceland since 1998 was caused by the emergence and clonal expansion of progenitor strains, with macrolide resistance being conferred predominantly by inducible Mef(A) and Msr(D) drug efflux pumps. The occurrence of emm12 strains with macrolide resistance and decreased beta-lactam susceptibility was unexpected and is of public health concern.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus pyogenes , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Estudios Epidemiológicos , Genotipo , Humanos , Islandia/epidemiología , Macrólidos/farmacología , Metagenómica , Pruebas de Sensibilidad Microbiana , Mutación , Infecciones Estreptocócicas/epidemiología , Streptococcus pyogenes/genética , beta-Lactamas
9.
JCI Insight ; 5(11)2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32493846

RESUMEN

Streptococcus pyogenes (group A streptococcus; GAS) causes 600 million cases of pharyngitis annually worldwide. There is no licensed human GAS vaccine despite a century of research. Although the human oropharynx is the primary site of GAS infection, the pathogenic genes and molecular processes used to colonize, cause disease, and persist in the upper respiratory tract are poorly understood. Using dense transposon mutant libraries made with serotype M1 and M28 GAS strains and transposon-directed insertion sequencing, we performed genome-wide screens in the nonhuman primate (NHP) oropharynx. We identified many potentially novel GAS fitness genes, including a common set of 115 genes that contribute to fitness in both genetically distinct GAS strains during experimental NHP pharyngitis. Targeted deletion of 4 identified fitness genes/operons confirmed that our newly identified targets are critical for GAS virulence during experimental pharyngitis. Our screens discovered many surface-exposed or secreted proteins - substrates for vaccine research - that potentially contribute to GAS pharyngitis, including lipoprotein HitA. Pooled human immune globulin reacted with purified HitA, suggesting that humans produce antibodies against this lipoprotein. Our findings provide new information about GAS fitness in the upper respiratory tract that may assist in translational research, including developing novel vaccines.


Asunto(s)
Genes Bacterianos , Faringitis , Infecciones Estreptocócicas , Streptococcus pyogenes , Factores de Virulencia , Animales , Modelos Animales de Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Macaca fascicularis , Faringitis/genética , Faringitis/metabolismo , Faringitis/microbiología , Faringitis/patología , Infecciones Estreptocócicas/genética , Infecciones Estreptocócicas/metabolismo , Infecciones Estreptocócicas/patología , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/patogenicidad , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
10.
Am J Pathol ; 190(8): 1625-1631, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32407732

RESUMEN

Invasive strains of Streptococcus pyogenes with significantly reduced susceptibility to ß-lactam antibiotics have been recently described. These reports have caused considerable concern in the international infectious disease, medical microbiology, and public health communities because S. pyogenes has remained universally susceptible to ß-lactam antibiotics for 70 years. Virtually all analyzed strains had single amino acid replacements in penicillin-binding protein 2X (PBP2X), a major target of ß-lactam antibiotics in pathogenic bacteria. We used isogenic strains to test the hypothesis that a single amino acid replacement in PBP2X conferred a fitness advantage in a mouse model of necrotizing myositis. We determined that when mice were administered intermittent subtherapeutic dosing of benzylpenicillin, the strain with a Pro601Leu amino acid replacement in PBP2X that confers reduced ß-lactam susceptibility in vitro was more fit, as assessed by the magnitude of colony-forming units recovered from disease tissue. These data provide important pathogenesis information that bears on this emerging global infectious disease problem.


Asunto(s)
Antibacterianos/uso terapéutico , Fascitis Necrotizante/tratamiento farmacológico , Miositis/tratamiento farmacológico , Penicilina G/uso terapéutico , Proteínas de Unión a las Penicilinas/genética , Streptococcus pyogenes/genética , Sustitución de Aminoácidos , Animales , Modelos Animales de Enfermedad , Fascitis Necrotizante/microbiología , Ratones , Miositis/microbiología
11.
PLoS One ; 15(3): e0229064, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32214338

RESUMEN

Streptococcus pyogenes is a strict human pathogen responsible for more than 700 million infections annually worldwide. Strains of serotype M28 S. pyogenes are typically among the five more abundant types causing invasive infections and pharyngitis in adults and children. Type M28 strains also have an unusual propensity to cause puerperal sepsis and neonatal disease. We recently discovered that a one-nucleotide indel in an intergenic homopolymeric tract located between genes Spy1336/R28 and Spy1337 altered virulence in a mouse model of infection. In the present study, we analyzed size variation in this homopolymeric tract and determined the extent of heterogeneity in the number of tandemly-repeated 79-amino acid domains in the coding region of Spy1336/R28 in large samples of strains recovered from humans with invasive infections. Both repeat sequence elements are highly polymorphic in natural populations of M28 strains. Variation in the homopolymeric tract results in (i) changes in transcript levels of Spy1336/R28 and Spy1337 in vitro, (ii) differences in virulence in a mouse model of necrotizing myositis, and (iii) global transcriptome changes as shown by RNAseq analysis of isogenic mutant strains. Variation in the number of tandem repeats in the coding sequence of Spy1336/R28 is responsible for size variation of R28 protein in natural populations. Isogenic mutant strains in which genes encoding R28 or transcriptional regulator Spy1337 are inactivated are significantly less virulent in a nonhuman primate model of necrotizing myositis. Our findings provide impetus for additional studies addressing the role of R28 and Spy1337 variation in pathogen-host interactions.


Asunto(s)
Proteínas Bacterianas/genética , Fascitis Necrotizante/microbiología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/genética , Streptococcus pyogenes/aislamiento & purificación , Virulencia/genética , Animales , Modelos Animales de Enfermedad , Fascitis Necrotizante/patología , Regulación Bacteriana de la Expresión Génica , Heterogeneidad Genética , Humanos , Ratones , Polimorfismo Genético , Infecciones Estreptocócicas/patología , Transcriptoma , Factores de Virulencia/genética
12.
Am J Pathol ; 190(4): 862-873, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32200972

RESUMEN

Group A streptococcus (GAS) is a major pathogen that impacts health and economic affairs worldwide. Although the oropharynx is the primary site of infection, GAS can colonize the female genital tract and cause severe diseases, such as puerperal sepsis, neonatal infections, and necrotizing myometritis. Our understanding of how GAS genes contribute to interaction with the primate female genital tract is limited by the lack of relevant animal models. Using two genome-wide transposon mutagenesis screens, we identified 69 GAS genes required for colonization of the primate vaginal mucosa in vivo and 96 genes required for infection of the uterine wall ex vivo. We discovered a common set of 39 genes important for GAS fitness in both environments. They include genes encoding transporters, surface proteins, transcriptional regulators, and metabolic pathways. Notably, the genes that encode the surface-exclusion protein (SpyAD) and the immunogenic secreted protein 2 (Isp2) were found to be crucial for GAS fitness in the female primate genital tract. Targeted gene deletion confirmed that isogenic mutant strains ΔspyAD and Δisp2 are significantly impaired in ability to colonize the primate genital tract and cause uterine wall pathologic findings. Our studies identified novel GAS genes that contribute to female reproductive tract interaction that warrant translational research investigation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidad , Enfermedades Vaginales/microbiología , Animales , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Femenino , Regulación Bacteriana de la Expresión Génica , Macaca fascicularis , Proteínas de la Membrana/genética , Infecciones Estreptocócicas/metabolismo , Streptococcus pyogenes/metabolismo , Enfermedades Vaginales/patología , Virulencia
13.
mBio ; 11(1)2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32071274

RESUMEN

A fundamental goal of contemporary biomedical research is to understand the molecular basis of disease pathogenesis and exploit this information to develop targeted and more-effective therapies. Necrotizing myositis caused by the bacterial pathogen Streptococcus pyogenes is a devastating human infection with a high mortality rate and few successful therapeutic options. We used dual transcriptome sequencing (RNA-seq) to analyze the transcriptomes of S. pyogenes and host skeletal muscle recovered contemporaneously from infected nonhuman primates. The in vivo bacterial transcriptome was strikingly remodeled compared to organisms grown in vitro, with significant upregulation of genes contributing to virulence and altered regulation of metabolic genes. The transcriptome of muscle tissue from infected nonhuman primates (NHPs) differed significantly from that of mock-infected animals, due in part to substantial changes in genes contributing to inflammation and host defense processes. We discovered significant positive correlations between group A streptococcus (GAS) virulence factor transcripts and genes involved in the host immune response and inflammation. We also discovered significant correlations between the magnitude of bacterial virulence gene expression in vivo and pathogen fitness, as assessed by previously conducted genome-wide transposon-directed insertion site sequencing (TraDIS). By integrating the bacterial RNA-seq data with the fitness data generated by TraDIS, we discovered five new pathogen genes, namely, S. pyogenes 0281 (Spy0281 [dahA]), ihk-irr, slr, isp, and ciaH, that contribute to necrotizing myositis and confirmed these findings using isogenic deletion-mutant strains. Taken together, our study results provide rich new information about the molecular events occurring in severe invasive infection of primate skeletal muscle that has extensive translational research implications.IMPORTANCE Necrotizing myositis caused by Streptococcus pyogenes has high morbidity and mortality rates and relatively few successful therapeutic options. In addition, there is no licensed human S. pyogenes vaccine. To gain enhanced understanding of the molecular basis of this infection, we employed a multidimensional analysis strategy that included dual RNA-seq and other data derived from experimental infection of nonhuman primates. The data were used to target five streptococcal genes for pathogenesis research, resulting in the unambiguous demonstration that these genes contribute to pathogen-host molecular interactions in necrotizing infections. We exploited fitness data derived from a recently conducted genome-wide transposon mutagenesis study to discover significant correlation between the magnitude of bacterial virulence gene expression in vivo and pathogen fitness. Collectively, our findings have significant implications for translational research, potentially including vaccine efforts.


Asunto(s)
Fascitis Necrotizante/microbiología , Miositis/microbiología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Transcriptoma , Factores de Virulencia/genética , Animales , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Músculo Esquelético/microbiología , Músculo Esquelético/patología , Miositis/genética , Miositis/metabolismo , Primates , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Streptococcus pyogenes/patogenicidad , Virulencia/genética , Factores de Virulencia/metabolismo
14.
J Clin Microbiol ; 58(4)2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-31996443

RESUMEN

Recently, two related Streptococcus pyogenes strains with reduced susceptibility to ampicillin, amoxicillin, and cefotaxime, antibiotics commonly used to treat S. pyogenes infections, were reported. The two strains had the same nonsynonymous (amino acid-substituting) mutation in the pbp2x gene, encoding penicillin-binding protein 2X (PBP2X). This concerning report led us to investigate our library of 7,025 genome sequences of type emm1, emm28, and emm89S. pyogenes clinical strains recovered from intercontinental sources for mutations in pbp2x We identified 137 strains that, combined, had 37 nonsynonymous mutations in 36 codons in pbp2x Although to a lesser magnitude than the two previously published isolates, many of our strains had decreased susceptibility in vitro to multiple beta-lactam antibiotics. Many pbp2x mutations were found only in single strains, but 16 groups of two or more isolates of the same emm type had an identical amino acid replacement. Phylogenetic analysis showed that, with one exception, strains of the same emm type with the same amino acid replacement were clonally related by descent. This finding indicates that strains with some amino acid changes in PBP2X can successfully spread to new human hosts and cause invasive infections. Mapping of the amino acid changes onto a three-dimensional structure of the related Streptococcus pneumoniae PBP2X suggests that some substitutions are located in regions functionally important in related pathogenic bacterial species. Decreased beta-lactam susceptibility is geographically widespread in strains of numerically common emm gene subtypes. Enhanced surveillance and further epidemiological and molecular genetic study of this potential emergent antimicrobial problem are warranted.


Asunto(s)
Streptococcus pyogenes , beta-Lactamas , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Proteínas de Unión a las Penicilinas/genética , Filogenia , Streptococcus pyogenes/genética , beta-Lactamas/farmacología
15.
Am J Pathol ; 189(10): 2002-2018, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31369755

RESUMEN

Two-component systems (TCSs) are signal transduction proteins that enable bacteria to respond to external stimuli by altering the global transcriptome. Accessory proteins interact with TCSs to fine-tune their activity. In group A Streptococcus (GAS), regulator of Cov (RocA) is an accessory protein that functions with the control of virulence regulator/sensor TCS, which regulates approximately 15% of the GAS transcriptome. Whole-genome sequencing analysis of serotype M28 GAS strains collected from invasive infections in humans identified a higher number of missense (amino acid-altering) and nonsense (protein-truncating) polymorphisms in rocA than expected. We hypothesized that polymorphisms in RocA alter the global transcriptome and virulence of serotype M28 GAS. We used naturally occurring clinical isolates with rocA polymorphisms (n = 48), an isogenic rocA deletion mutant strain, and five isogenic rocA polymorphism mutant strains to perform genome-wide transcript analysis (RNA sequencing), in vitro virulence factor assays, and mouse and nonhuman primate pathogenesis studies to test this hypothesis. Results demonstrated that polymorphisms in rocA result in either a subtle transcriptome change, causing a wild-type-like virulence phenotype, or a substantial transcriptome change, leading to a significantly increased virulence phenotype. Each polymorphism had a unique effect on the global GAS transcriptome. Taken together, our data show that naturally occurring polymorphisms in one gene encoding an accessory protein can significantly alter the global transcriptome and virulence phenotype of GAS, an important human pathogen.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Miositis/patología , Polimorfismo de Nucleótido Simple , Infecciones Estreptocócicas/patología , Streptococcus pyogenes/patogenicidad , Transactivadores/genética , Animales , Proteínas Bacterianas/metabolismo , Ratones , Miositis/epidemiología , Miositis/microbiología , Infecciones Estreptocócicas/complicaciones , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/genética , Transcriptoma , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
16.
Nat Genet ; 51(3): 548-559, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30778225

RESUMEN

Streptococcus pyogenes causes 700 million human infections annually worldwide, yet, despite a century of intensive effort, there is no licensed vaccine against this bacterium. Although a number of large-scale genomic studies of bacterial pathogens have been published, the relationships among the genome, transcriptome, and virulence in large bacterial populations remain poorly understood. We sequenced the genomes of 2,101 emm28 S. pyogenes invasive strains, from which we selected 492 phylogenetically diverse strains for transcriptome analysis and 50 strains for virulence assessment. Data integration provided a novel understanding of the virulence mechanisms of this model organism. Genome-wide association study, expression quantitative trait loci analysis, machine learning, and isogenic mutant strains identified and confirmed a one-nucleotide indel in an intergenic region that significantly alters global transcript profiles and ultimately virulence. The integrative strategy that we used is generally applicable to any microbe and may lead to new therapeutics for many human pathogens.


Asunto(s)
Genoma Bacteriano/genética , Streptococcus pyogenes/genética , Transcriptoma/genética , Virulencia/genética , Regulación Bacteriana de la Expresión Génica/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Filogenia , Sitios de Carácter Cuantitativo/genética
17.
J Clin Invest ; 129(2): 887-901, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30667377

RESUMEN

Necrotizing fasciitis and myositis are devastating infections characterized by high mortality. Group A streptococcus (GAS) is a common cause of these infections, but the molecular pathogenesis is poorly understood. We report a genome-wide analysis using serotype M1 and M28 strains that identified GAS genes contributing to necrotizing myositis in nonhuman primates (NHP), a clinically relevant model. Using transposon-directed insertion-site sequencing (TraDIS), we identified 126 and 116 GAS genes required for infection by serotype M1 and M28 organisms, respectively. For both M1 and M28 strains, more than 25% of the GAS genes required for necrotizing myositis encode known or putative transporters. Thirteen GAS transporters contributed to both M1 and M28 strain fitness in NHP myositis, including putative importers for amino acids, carbohydrates, and vitamins and exporters for toxins, quorum-sensing peptides, and uncharacterized molecules. Targeted deletion of genes encoding 5 transporters confirmed that each isogenic mutant strain was significantly (P < 0.05) impaired in causing necrotizing myositis in NHPs. Quantitative reverse-transcriptase PCR (qRT-PCR) analysis showed that these 5 genes are expressed in infected NHP and human skeletal muscle. Certain substrate-binding lipoproteins of these transporters, such as Spy0271 and Spy1728, were previously documented to be surface exposed, suggesting that our findings have translational research implications.


Asunto(s)
Proteínas Bacterianas , Proteínas Portadoras , Fascitis Necrotizante , Regulación Bacteriana de la Expresión Génica , Miositis , Streptococcus pyogenes , Animales , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/genética , Línea Celular , Modelos Animales de Enfermedad , Fascitis Necrotizante/genética , Fascitis Necrotizante/metabolismo , Fascitis Necrotizante/patología , Humanos , Ratones , Miositis/genética , Miositis/metabolismo , Miositis/microbiología , Miositis/patología , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/patogenicidad
18.
Infect Immun ; 86(11)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30126898

RESUMEN

Serotype M28 group A streptococcus (GAS) is a common cause of infections such as pharyngitis ("strep throat") and necrotizing fasciitis ("flesh-eating" disease). Relatively little is known about the molecular mechanisms underpinning M28 GAS pathogenesis. Whole-genome sequencing studies of M28 GAS strains recovered from patients with invasive infections found an unexpectedly high number of missense (amino acid-changing) and nonsense (protein-truncating) polymorphisms in rocA (regulator of Cov), leading us to hypothesize that altered RocA activity contributes to M28 GAS molecular pathogenesis. To test this hypothesis, an isogenic rocA deletion mutant strain was created. Transcriptome sequencing (RNA-seq) analysis revealed that RocA inactivation significantly alters the level of transcripts for 427 and 323 genes at mid-exponential and early stationary growth phases, respectively, including genes for 41 transcription regulators and 21 virulence factors. In contrast, RocA transcriptomes from other GAS M protein serotypes are much smaller and include fewer transcription regulators. The rocA mutant strain had significantly increased secreted activity of multiple virulence factors and grew to significantly higher colony counts under acid stress in vitro RocA inactivation also significantly increased GAS virulence in a mouse model of necrotizing myositis. Our results demonstrate that RocA is an important regulator of transcription regulators and virulence factors in M28 GAS and raise the possibility that naturally occurring polymorphisms in rocA in some fashion contribute to human invasive infections caused by M28 GAS strains.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Miositis/patología , Infecciones Estreptocócicas/patología , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidad , Transactivadores/metabolismo , Animales , Ensayo de Unidades Formadoras de Colonias , Modelos Animales de Enfermedad , Eliminación de Gen , Perfilación de la Expresión Génica , Ratones , Miositis/microbiología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/crecimiento & desarrollo , Transactivadores/genética , Factores de Virulencia/biosíntesis , Factores de Virulencia/genética
19.
mSphere ; 2(6)2017.
Artículo en Inglés | MEDLINE | ID: mdl-29104937

RESUMEN

Streptococcus pyogenes (group A streptococcus [GAS]) causes 600 million cases of pharyngitis each year. Despite this considerable disease burden, the molecular mechanisms used by GAS to infect, cause clinical pharyngitis, and persist in the human oropharynx are poorly understood. Saliva is ubiquitous in the human oropharynx and is the first material GAS encounters in the upper respiratory tract. Thus, a fuller understanding of how GAS survives and proliferates in saliva may provide valuable insights into the molecular mechanisms at work in the human oropharynx. We generated a highly saturated transposon insertion mutant library in serotype M1 strain MGAS2221, a strain genetically representative of a pandemic clone that arose in the 1980s and spread globally. The transposon mutant library was exposed to human saliva to screen for GAS genes required for wild-type fitness in this clinically relevant fluid. Using transposon-directed insertion site sequencing (TraDIS), we identified 92 genes required for GAS fitness in saliva. The more prevalent categories represented were genes involved in carbohydrate transport/metabolism, amino acid transport/metabolism, and inorganic ion transport/metabolism. Using six isogenic mutant strains, we confirmed that each of the mutants was significantly impaired for growth or persistence in human saliva ex vivo. Mutants with an inactivated Spy0644 (sptA) or Spy0646 (sptC) gene had especially severe persistence defects. This study is the first to use of TraDIS to study bacterial fitness in human saliva. The new information we obtained will be valuable for future translational maneuvers designed to prevent or treat human GAS infections. IMPORTANCE The human bacterial pathogen Streptococcus pyogenes (group A streptococcus [GAS]) causes more than 600 million cases of pharyngitis annually worldwide, 15 million of which occur in the United States. The human oropharynx is the primary anatomic site for GAS colonization and infection, and saliva is the first material encountered. Using a genome-wide transposon mutant screen, we identified 92 GAS genes required for wild-type fitness in human saliva. Many of the identified genes are involved in carbohydrate transport/metabolism, amino acid transport/metabolism, and inorganic ion transport/metabolism. The new information is potentially valuable for developing novel GAS therapeutics and vaccine research.

20.
mSphere ; 2(2)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28435893

RESUMEN

Serum opacity factor (SOF) is a cell surface virulence factor made by the human pathogen Streptococcus pyogenes. We found that S. pyogenes strains with naturally occurring truncation mutations in the sof gene have markedly enhanced beta-hemolysis. Moreover, deletion of the sof gene in a SOF-positive parental strain resulted in significantly increased beta-hemolysis. Together, these observations suggest that SOF is an inhibitor of beta-hemolysis. SOF has two major functional domains, including an opacification domain and a fibronectin-binding domain. Using a SOF-positive serotype M89 S. pyogenes parental strain and a panel of isogenic mutant derivative strains, we evaluated the relative contribution of each SOF functional domain to beta-hemolysis inhibition and bacterial virulence. We found that the opacification domain, rather than the fibronectin-binding domain, is essential for SOF-mediated beta-hemolysis inhibition. The opacification domain, but not the fibronectin-binding domain of SOF, also contributed significantly to virulence in mouse models of bacteremia and necrotizing myositis. Inasmuch as the opacification domain of SOF is known to interact avidly with host high-density lipoprotein (HDL), we speculate that SOF-HDL interaction is an important process underlying SOF-mediated beta-hemolysis inhibition and SOF-mediated virulence. IMPORTANCEStreptococcus pyogenes is a major human pathogen causing more than 700 million infections annually. As a successful pathogen, S. pyogenes produces many virulence factors that facilitate colonization, proliferation, dissemination, and tissue damage. Serum opacity factor (SOF), an extracellular protein, is one of the virulence factors made by S. pyogenes. The underlying mechanism of how SOF contributes to virulence is not fully understood. SOF has two major features: (i) it opacifies host serum by interacting with high-density lipoprotein, and (ii) it inhibits beta-hemolysis on blood agar. In this study, we demonstrate that the domain of SOF essential for opacifying serum is also essential for SOF-mediated beta-hemolysis inhibition and SOF-mediated virulence. Our results shed new light on the molecular mechanisms of SOF-host interaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...