Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738311

RESUMEN

The study of structural isomerism in copper nanoclusters has been relatively limited compared to that in gold and silver nanoclusters. In this work, we present the controlled synthesis and structures of two isomeric copper nanoclusters, denoted as Cu22-1 and Cu22-2, whose compositions were determined to be Cu22(SePh)10(Se)6(P(Ph-4F)3)8 through single-crystal X-ray diffraction (SCXRD). The structural isomerism of Cu22-1 and Cu22-2 arises from the different arrangements of a few Cu(SeR)(PR3) motifs on the surface structure. These subtle changes in the surface structure also influence the distortion of the core and the spatial arrangement of the clusters, and affect the electronic structure. Furthermore, due to their distinct structures, Cu22-1 and Cu22-2 exhibit different catalytic properties in the copper-catalyzed [3 + 2] azide-alkyne cycloaddition (CuAAC). Notably, Cu22-1 demonstrates efficient catalytic activity for photoinduced AAC, achieving a yield of 90% within 1 hour. This research contributes to the understanding of structural isomerism in copper nanoclusters and offers insights into the structure-function relationship in these systems.

2.
Inorg Chem ; 63(19): 8775-8781, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38696247

RESUMEN

The atomic precision of the subnanometer nanoclusters has provided sound proof on the structural correlation of metal complexes and larger-sized metal nanoparticles. Herein, we report the synthesis, crystallography, structural characterization, electrochemistry, and optical properties of a 133-atom intermetallic nanocluster protected by 57 thiolates (3-methylbenzenethiol, abbreviated as m-MBTH) and 3 chlorides, with the formula of Ag125Cu8(m-MBT)57Cl3. This is the largest Ag-Cu bimetallic cluster ever reported. Crystallographic analysis revealed that the nanocluster has a three-layer concentric core-shell structure, Ag7@Ag47@Ag71Cu8S57Cl3, and the Ag54 metal kernel adopts a D5h symmetry. The nuclei number is between that of the previously reported large silver cluster [Ag136(SR)64Cl3Ag0.45]- and the large silver-rich cluster Au130-xAgx(SR)55 (x = 98). All these three clusters bear a similar metallic core structure, while the main structural difference lies in the shell motif structures. Electron counting revealed an open electron shell with 73 delocalized electrons, which was verified by the electron paramagnetic resonance analysis. The DPV electrochemical measurement indicates a multielectron state quantization double-layer charging shape and single-electron sequential charging and discharging characteristic of the AgCu alloy cluster. In addition, the open-hole Z-scan test reveals the nonlinear optical absorption (2-3 optical absorption in the NIR-II/III region) of Ag125Cu8 nanoclusters.

3.
Chem Sci ; 15(13): 4853-4859, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38550675

RESUMEN

Excellent luminescence properties and unique chiral structures enable nanoclusters to be a novel class of circularly polarized luminescence (CPL) materials, and their precise structures facilitate the clarification of structure-activity relationships. However, efficiently preparing nanoclusters with CPL properties is still a great challenge. In this work, the luminescent properties as well as the molecular symmetry were simultaneously manipulated to transform the centrosymmetric Au14Cd1 into a chiral Au12Cd2 nanocluster, which has CPL properties. In detail, Cd doping and chiral-ligand exchange were performed simultaneously on the Au14Cd1 nanocluster to realize its photoluminescence enhancement and chiral-framework construction by increasing the alloying degree which is defined as deep-alloying and chiral ligand induction at the same time, resulting in the formation of an Au12Cd2 nanocluster with CPL properties. Further investigations revealed an increased alloying degree in the structure-maintained M6 kernel of Au12Cd2, which results in a 15-fold enhancement in quantum yield.

4.
Org Lett ; 26(12): 2387-2392, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38488192

RESUMEN

[2.2]Paracyclophane-fused heterocycles represent an important scaffold. Traditional approaches often suffer from tedious synthetic routes, and the development of catalytic synthesis of them remains in its infancy. Herein, by employing highly strained aryne intermediates as partners, we have developed a concise protocol by palladium-catalyzed C-H activation/annulation from [2.2]paracyclophanecarboxamide substrates. [2.2]Paracyclophane-fused quinolinone products are obtained in good yields (up to 84%). Furthermore, the utility of the process has been shown through the synthesis of [2.2]paracyclophane-fused heterocyclic catalysts.

5.
ACS Nano ; 18(8): 6591-6599, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38305198

RESUMEN

The atomic precision of sub-nanometer-sized metal nanoclusters makes it possible to elucidate the kinetics of metal nanomaterials from the molecular level. Herein, the size reduction of an atomically precise [Au23(CHT)16]- (HCHT = cyclohexanethiol) cluster upon ligand exchange with HSAdm (1-adamantanethiol) has been reported. During the 16 h conversion of [Au23(CHT)16]- to Au16(SR)12, the neutral 6e Au21(SR)15, and its 1e-reduction state, i.e. the 5e, cationic radical, [Au21(SR)15]+, are active intermediates to account for the formation of thermodynamically stable Au16 products. The combination of spectroscopic monitoring (with UV-vis and ESI-MS) and DFT calculations indicates the preferential size-reduction on the corner Au atoms on the core surface and the terminal Au atoms on longer AunSn+1 staples. This study provides a reassessment on the electronic state of the Au21 structure and highlights the single electron transfer processes in cluster systems and thus the importance of the EPR analysis on the mechanistic issues.

6.
Angew Chem Int Ed Engl ; 63(12): e202317995, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38191987

RESUMEN

Exploiting emissive hydrophobic nanoclusters for hydrophilic applications remains a challenge because of photoluminescence (PL) quenching during phase transfer. In addition, the mechanism underlying PL quenching remains unclear. In this study, the PL-quenching mechanism was examined by analyzing the atomically precise structures and optical properties of a surface-engineered Ag29 nanocluster with an all-around-carboxyl-functionalized surface. Specifically, phase-transfer-triggered PL quenching was justified as molecular decoupling, which directed an unfixed cluster surface and weakened the radiative transition. Furthermore, emission recovery of the quenched nanoclusters was accomplished by using a supramolecular recoupling approach through the glutathione-addition-induced aggregation of cluster molecules, wherein the restriction of intracluster motion and intercluster rotation strengthened the radiative transition of the clusters. The results of this work offer a new perspective on structure-emission correlations for atomically precise nanoclusters and hopefully provide insight into the fabrication of highly emissive cluster-based nanomaterials for downstream hydrophilic applications.

7.
Nanoscale ; 16(4): 1526-1538, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38168796

RESUMEN

Metal clusters have distinct features from single atom and nanoparticle (>1 nm) catalysts, making them effective catalysts for various heterogeneous reactions. Nevertheless, the ambiguity and complexity of the catalyst structure preclude in-depth mechanistic studies. The evolution of metal species during synthesis and reaction processes represents another challenge. One effective solution is to precisely control the structure of the metal cluster, thus offering a well-defined pre-catalyst. The well-defined chemical formula and configurations make atomically precise metal nanoclusters optimal choices. To fabricate an atomically precise metal nanocluster-based heterogeneous catalyst with enhanced performance, careful structural design of both the nanocluster and support material, an effective assembling technique, and a pre-treatment method for these hybrids need to be developed. In this review, we summarize recent advances in in the development of heterogeneous catalysts using atomically precise gold and alloy gold nanoclusters as precursors. We will begin with a brief introduction to the structural properties of atomically precise nanoclusters and structure determination of cluster/support hybrids. We will then introduce heterogeneous catalysts prepared from medium size (tens to hundreds of metal atoms) and low nuclearity nanoclusters. We will illustrate how ligand modification, support-cluster interaction, hybrid fabrication, and heteroatom (Pt, Pd Ag, Cu, Cd, Fe) introduction affect the structural properties and pretreatment/reaction-induced structural evolution of gold nanocluster pre-catalysts. Lastly, we will highlight the synthetic method of NCs@MOF hybrids and their effectiveness in circumventing the adverse cluster structural evolution. These findings are expected to shed light on the structure-activity relationship studies and future catalyst design strategies using atomically precise metal nanocluster pre-catalysts.

8.
J Org Chem ; 89(3): 1719-1726, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38204281

RESUMEN

As an interim paradigm for the catalysts between those based on more conventional mononuclear molecular Pd complexes and Pdn nanoparticles widely used in organic synthesis, polynuclear palladium clusters have attracted great attention for their unique reactivity and electronic properties. However, the development of Pd cluster catalysts for organic transformations and mechanistic investigations is still largely unexploited. Herein, we disclose the use of trinuclear palladium (Pd3Cl) species as an active catalyst for the direct C-H α-arylation of benzo[b]furans with aryl iodides to afford 2-arylbenzofurans in good yields under mild conditions. With this method, broad substrate adaptability was observed, and several drug intermediates were synthesized in high yields. Mechanistic studies indicated that the Pd3 core most likely remained intact throughout the reaction course.

9.
Chem Commun (Camb) ; 60(10): 1337-1340, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38197463

RESUMEN

In this work, a gold nanocluster [Au14(2-SAdm)9(Dppe)2]+ was synthesized and structurally determined by X-ray crystallography. The crystals of this cluster exhibit a 50-fold enhancement in quantum yield (5.05% for crystals) compared with its solution. Crystallographic analysis reveals that the weak intermolecular interactions (C-H⋯π, π⋯π) can inhibit the molecular vibration and thus generate the crystallization-induced emission enhancement phenomenon.

10.
ACS Nano ; 18(2): 1555-1562, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38166168

RESUMEN

Studying the interactions of atomically precise metal nanoclusters in their assembly systems is of great significance in the nanomaterial research field, which has attracted increasing interest in the last few decades. Herein, we report the cocrystallization of two oppositely charged atomically precise metal nanoclusters in one unit cell: [Au1Ag24(SR)18]- ((AuAg)25 for short) and [AuxAg27-x(Dppf)4(SR)9]2+ (x = 10-12; (AuAg)27 for short) with a 1:1 ratio. (AuAg)27 could maintain its structure in the presence of (AuAg)25, whether in the crystalline and the solution state, while the metastable (AuAg)27 component underwent a spontaneous transformation to (AuAg)16(Dppf)2(SR)8 after dissociating the (AuAg)25 component from this cocrystal, demonstrating the "parasitism" relationship of the (AuAg)27 component over (AuAg)25 in this dual-cluster system. This work enriches the family of cluster-based assemblies and elucidates the delicate relationship between nanoparticles of cocrystals.

11.
Nat Commun ; 15(1): 251, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177173

RESUMEN

Colorful circularly polarized luminescence materials are desired for 3D displays, information security and asymmetric synthesis, in which single-emitted materials are ideal owing to self-absorption avoidance, evenly entire-visible-spectrum-covered photon emission and facile device fabrication. However, restricted by the synthesis of chiral broad-luminescent emitters, the realization and application of high-performing single-emitted full-color circularly polarized luminescence is in its infancy. Here, we disclose a single-emitted full-color circularly polarized luminescence system (spiral full-color emission generator), composed of whole-vis-spectrum emissive quantum dots and chiral liquid crystals. The system achieves a maximum luminescence dissymmetry factor of 0.8 and remains an order of 10-1 in visible region by tuning its photonic bandgap. We then expand it to a series of desired customized-color circularly polarized luminescence, build chiral devices and further demonstrate the working scenario in the photoinduced enantioselective polymerization. This work contributes to the design and synthesis of efficient chiroptical materials, device fabrication and photoinduced asymmetric synthesis.

12.
Adv Sci (Weinh) ; 11(7): e2307085, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064120

RESUMEN

Herein, a remarkable achievement in the synthesis and characterization of an atomically precise copper-hydride nanocluster, [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- via a mild one-pot reaction is presented. Through X-ray crystallography analysis, it is revealed that [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- exhibits a unique shell-core-shell structure. The inner Cu29 kernel is composed of three twisted Cu13 units, connected through Cu4 face sharing. Surrounding the metal core, two Cu6 metal shells, resembling a protective sandwich structure are observed. This arrangement, along with intracluster π···π interactions and intercluster C─H···F─C interactions, contributes to the enhanced stability of [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- . The presence, number, and location of hydrides within the nanocluster are established through a combination of experimental and density functional theory investigations. Notably, the addition of a phosphine ligand triggers a fascinating nanocluster-to-nanocluster transformation in [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- , resulting in the generation of two nanoclusters, [Cu14 (SC6 H3 F2 )3 (PPh3 )8 H10 ]+ and [Cu13 (SC6 H3 F2 )3 (P(PhF)3 )7 H10 ]0 . Furthermore, it is demonstrated that [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- exhibits catalytic activity in the hydrogenation of nitroarenes. This intriguing nanocluster provides a unique opportunity to explore the assembly of M13 units, similar to other coinage metal nanoclusters, and investigate the nanocluster-to-nanocluster transformation in phosphine and thiol ligand co-protected copper nanoclusters.

13.
Angew Chem Int Ed Engl ; 63(4): e202317471, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38072830

RESUMEN

Recently, CO2 hydrogenation had a new breakthrough resulting from the design of catalysts to effectively activate linear CO2 with symmetry-breaking sites. However, understanding the relationship between symmetry-breaking sites and catalytic activity at the atomic level is still a great challenge. In this study, a set of gold-copper alloy Au13 Cux (x=0-4) nanoclusters were used as research objects to show the symmetry-controlled breaking structure on the surface of nanoclusters with the help of manipulability of the Cu atoms. Among them, Au13 Cu3 nanocluster displays the highest degree of symmetry-breaking on its crystal structure compared with the other nanoclusters in the family. Where the three copper atoms occupying the surface of the icosahedral kernel unevenly with one copper atom is coordinately unsaturated (CuS2 motif relative to CuS3 motif). As expected, Au13 Cu3 has an excellent hydrogenation activity of CO2 , in which the current density is as high as 70 mA cm-2 (-0.97 V) and the maximum FECO reaches 99 % at -0.58 V. Through the combination of crystal structures and theoretical calculations, the excellent catalytic activity of Au13 Cu3 is revealed to be indeed closely related to its asymmetric structure.

14.
Nanoscale ; 16(3): 1254-1259, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38117189

RESUMEN

The preparation and structural determination of silver nanoclusters (especially the medium-sized Ag clusters) remain more challenging relative to those of their gold counterparts because of the comparative instability of the former. In this work, three medium-sized Ag clusters were controllably synthesized and structurally determined, namely, [Ag52(S-Adm)30Br4H20]2- (Ag52 for short), Ag54(S-Adm)30Br4H20 (Ag54 for short), and [Ag58(S-Adm)30Br4(NO3)2H22]2+ (Ag58 for short) nanoclusters. Specifically, the introduction of PPh4Br gave rise to the generation of Ag52 and Ag54 nanoclusters with homologous compositions and configurations, while the TOABr salt selected Ag58 as the sole cluster product, whose geometric structure was completely different from those of Ag52 and Ag54 nanoclusters. In addition, the optical absorptions and emissions of the three medium-sized silver nanoclusters were compared. The findings in this work not only provide three uniquely medium-sized nanoclusters to enrich the silver cluster family but also point out a new approach (i.e., changing the counterion salt) for the preparation of new nanoclusters with novel structures.

15.
Small ; : e2309226, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38126680

RESUMEN

Developing efficient electrocatalysts for methanol oxidation reaction (MOR) is crucial in advancing the commercialization of direct methanol fuel cells (DMFCs). Herein, carbon-supported 0D/2D PtCuBi/C (0D/2D PtCuBi/C) catalysts are fabricated through a solvothermal method, followed by a partial electrochemical dealloying process to form a novel mixed-dimensional electrochemically dealloyed PtCuBi/C (0D/2D D-PtCuBi/C) catalysts. Benefiting from distinctive mixed-dimensional structure and composition, the as-obtained 0D/2D D-PtCuBi/C catalysts possess abundant accessible active sites. The introduction of Cu as a water-activating element weakens the COads , and oxophilic metal Bi facilitates the OHads , thereby enhancing its tolerance to CO poisoning and promoting MOR activity. The X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure spectroscopy (XAFS) collectively reveal the electron transfer from Cu and Bi to Pt, the electron-enrichment effect induced by dealloying, and the strong interactions among Pt-M (Cu, Pt, and Bi) multi-active sites, which improve the tuning of the electronic structure and enhancement of electron transfer ability. Impressively, the optimized 0D/2D D-PtCuBi/C catalysts exhibit the superior mass activity (MA) of 17.68 A mgPt -1 for MOR, which is 14.86 times higher than that of commercial Pt/C. This study offers a proposed strategy for Pt-based alloy catalysts, enabling their use as efficient anodic materials in fuel cell applications.

16.
J Phys Chem Lett ; 14(51): 11715-11724, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38112385

RESUMEN

The exploration of specific heavy doping of silver atoms into icosahedral Au13 clusters and their electronic structures and properties has been somewhat limited. Herein, we report two heavily Ag doped nanoclusters, [Au7Ag6(C7H4NOS)4(Dppf)3Cl]0 and [Au7Ag6(C7H4NOS)3(Dppf)3Cl](SbF6) (Au7Ag6-0 and Au7Ag6-1, respectively) [C7H4NOSH = 2-mercaptobenzoxazole, and Dppf = 1,1'-bis(diphenylphosphino)ferrocene]. The electronic structures and superatomic orbitals of nanoclusters were determined by density functional theory (DFT) calculations, and the energy degeneracy of the superatomic orbitals of Au7Ag6-1 is higher than that of Au7Ag6-0. Transient absorption spectroscopy was performed, revealing that Au7Ag6-0 significantly extends the excited-state lifetime. Both nanoclusters were supported on activated carbon for the oxygen reduction reaction. DFT calculations confirm that the catalytic activities mainly stem from the carbon atom of ferrocene rather than the iron atom. This study not only sheds light on the preparation of icosahedral alloy clusters but also provides insights into the regulation of icosahedral superatomic structure and electrocatalytic properties.

17.
Nat Commun ; 14(1): 6989, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914680

RESUMEN

The preparation of 2-Oxazolidinones using CO2 offers opportunities for green chemistry, but multi-site activation is difficult for most catalysts. Here, A low-nuclear Ag4 catalytic system is successfully customized, which solves the simultaneous activation of acetylene (-C≡C) and amino (-NH-) and realizes the cyclization of propargylamine with CO2 under mild conditions. As expected, the Turnover Number (TON) and Turnover Frequency (TOF) values of the Ag4 nanocluster (NC) are higher than most of reported catalysts. The Ag4* NC intermediates are isolated and confirmed their structures by Electrospray ionization (ESI) and 1H Nuclear Magnetic Resonance (1H NMR). Additionally, the key role of multiple Ag atoms revealed the feasibility and importance of low-nuclear catalysts at the atomic level, confirming the reaction pathways that are inaccessible to the Ag single-atom catalyst and Ag2 NC. Importantly, the nanocomposite achieves multiple recoveries and gram scale product acquisition. These results provide guidance for the design of more efficient and targeted catalytic materials.

18.
Eur J Med Chem ; 261: 115855, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37847955

RESUMEN

In view of the fact that the G-protein-coupled receptors (GPCRs) sit at the top of the signaling pathways triggering a diverse range of signaling cascades towards a cellular event, GPCRs are regarded as central drug targets. mGlu5, a type of classical GPCRs, is highly expressed in the central nervous system (CNS) and responds to the neurotransmitter glutamate. Researches show that mGlu5 is a potential drug target for the treatment of depression. Up to now, multiple mGlu5 negative allosteric modulators (NAMs) have entered clinical trials, but no small molecule mGlu5 NAM has yet to reach market. Herein, we report the structural optimization and structure-activity relationship studies of a series of novel mGlu5 NAMs. Among them, the novel compound 10b is a high-affinity mGluR5 antagonist, with an IC50 value of 11.5 nM. Besides, we evaluated the anti-depressant effect of compound 10b using the chronic unpredictable mild stress (CUMS)-induced depression model. The data showed that the mice in CUMS group were featured by decreased level of serum 5-HT and increased level of serum CORT, and the expression of synaptic proteins were reduced, including GluA1, GluA2, p-PKA, BDNF and TrkB. However, those factors for identifying sensitivity to depression-like behaviors could be improved by compound 10b treatment. The preliminary toxicology evaluations indicated that compound 10b had a good safety profile in vivo. Collectively, the compound 10b represents a promising lead compound for the treatment of depressive disorder.


Asunto(s)
Trastorno Depresivo , Pirimidinas , Ratones , Animales , Pirimidinas/farmacología , Pirimidinas/química , Regulación Alostérica , Relación Estructura-Actividad , Sistema Nervioso Central , Receptores Acoplados a Proteínas G
19.
Sci Adv ; 9(43): eadi9944, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37878702

RESUMEN

Endowing three-dimensional (3D) displays with flexibility drives innovation in the next-generation wearable and smart electronic technology. Printing circularly polarized luminescence (CPL) materials on stretchable panels gives the chance to build desired flexible stereoscopic displays: CPL provides unusual optical rotation characteristics to achieve the considerable contrast ratio and wide viewing angle. However, the lack of printable, intense circularly polarized optical materials suitable for flexible processing hinders the implementation of flexible 3D devices. Here, we report a controllable and macroscopic production of printable CPL-active photonic paints using a designed confining helical co-assembly strategy, achieving a maximum luminescence dissymmetry factor (glum) value of 1.6. We print customized graphics and meter-long luminous coatings with these paints on a range of substates such as polypropylene, cotton fabric, and polyester fabric. We then demonstrate a flexible textile 3D display panel with two printed sets of pixel arrays based on the orthogonal CPL emission, which lays an efficient framework for future intelligent displays and clothing.

20.
Chem Commun (Camb) ; 59(81): 12152-12155, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37740343

RESUMEN

Mo-doped NiCo Prussian blue analogue (PBA) electrocatalysts self-supported on Ni foam are elaborately designed, which exhibit a low potential of 1.358 V (vs. RHE) to reach 100 mA cm-2 for catalyzing the urea oxidation reaction (UOR). The incorporation of high-valence Mo (+6) modifies the electronic structure and improves the electron transfer ability. Using X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) techniques, we confirm the effect of Mo doping on the NiCo PBA electronic structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...