Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tree Physiol ; 44(1)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38079510

RESUMEN

Trichoderma can promote plant growth under saline stress, but the mechanisms remain to be revealed. In this study, we investigate photosynthetic gas exchange, photosystem II (PSII) performance, nitrogen absorption and accumulation in a medicinal plant wolfberry (Lycium chinense) in saline soil supplemented with Trichoderma biofertilizer (TF). Larger nitrogen and biomass accumulation were found in plants supplemented with TF than with organic fertilizer (OF), suggesting that Trichoderma asperellum promoted plant growth and nitrogen accumulation under saline stress. T. asperellum strengthened root nitrogen (N) absorption according to greater increased root NH4+ and NO3- influxes under supplement with TF than OF, while nitrogen assimilative enzymes such as nitrate reductase, nitrite reductase and glutamine synthetase activities in roots and leaves were also stimulated. Thus, the elevated N accumulation derived from the induction of T. asperellum on nitrogen absorption and assimilation. Greater increased photosynthetic rate (Pn) and photosynthetic N-use efficiency under supplement with TF than OF illustrated that T. asperellum enhanced photosynthetic capacity and N utilization under saline stress. Although increased leaf stomatal conductance contributed to carbon (C) isotope fractionation under TF supplement, leaf 13C abundance was significantly increased by supplement with TF rather than OF, indicating that T. asperellum raised CO2 assimilation to a greater extent, reducing C isotope preference. Trichoderma asperellum optimized electron transport at PSII donor and acceptor sides under saline stress because of lower K and J steps in chlorophyll fluorescence transients under supplement with TF than OF. The amount of PSII active reaction centers was also increased by T. asperellum. Thus, PSII performance was upgraded, consistent with greater heightened delayed chlorophyll fluorescence transients and I1 peak under supplement with TF than OF. In summary, TF acted to increase N nutrient acquisition and photosynthetic C fixation resulting in enhanced wolfberry growth under saline soil stress.


Asunto(s)
Hypocreales , Lycium , Lycium/metabolismo , Clorofila , Nitrógeno , Suelo , Fotosíntesis , Hojas de la Planta/metabolismo , Complejo de Proteína del Fotosistema II , Isótopos
2.
Adv Healthc Mater ; 13(2): e2302460, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37816513

RESUMEN

Flexible sensors, as a significant component of flexible electronics, have attracted great interest the realms of human-computer interaction and health monitoring due to their high conformability, adjustable sensitivity, and excellent durability. In comparison to wearable sensor-based in vitro health monitoring, the use of implantable flexible sensors (IFSs) for in vivo health monitoring offers more accurate and reliable vital sign information due to their ability to adapt and directly integrate with human tissue. IFSs show tremendous promise in the field of health monitoring, with unique advantages such as robust signal reading capabilities, lightweight design, flexibility, and biocompatibility. Herein, a review of IFSs for vital signs monitoring is detailly provided, highlighting the essential conditions for in vivo applications. As the prerequisites of IFSs, the stretchability and wireless self-powered properties of the sensor are discussed, with a special attention paid to the sensing materials which can maintain prominent biosafety (i.e., biocompatibility, biodegradability, bioresorbability). Furthermore, the applications of IFSs monitoring various parts of the body are described in detail, with a summary in brain monitoring, eye monitoring, and blood monitoring. Finally, the challenges as well as opportunities in the development of next-generation IFSs are presented.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Electrónica , Prótesis e Implantes
3.
Nat Commun ; 14(1): 4839, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563116

RESUMEN

Persistent room temperature phosphorescent materials with unique mechanical properties and robust optical properties have great potential in flexible electronics and photonics. However, developing such materials remains a formidable challenge. Here, we present highly stretchable, lightweight, and multicolored persistent luminescence elastomers, produced by incorporating ionic room temperature phosphorescent polymers and polyvinyl alcohol into a polydimethylsiloxane matrix. These prepared elastomers exhibit high optical transparency in daylight and emit bright persistent luminescence after the removal of 365 nm excitation. The homogeneous distribution of polymers within the matrix has been confirmed by confocal fluorescence microscopy, scanning electron microscopy, and atomic force microscopy. Mechanical property investigations revealed that the prepared persistent luminescence elastomers possess satisfactory stretchability. Impressively, these elastomers maintain robust optical properties even under extensive and repeated mechanical deformations, a characteristic previously unprecedented. These fantastic features make these persistent luminescence elastomers ideal candidates for potential applications in wearable devices, flexible displays, and anti-counterfeiting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...