Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36293892

RESUMEN

The total first marriage rate (TFMR) of Chinese women shows a downward trend in fluctuations from 1970 to 2016, but it is affected by the tempo distortion caused by changes in the mean age at first marriage. Thus, we compare the total first marriage rate (TFMR) and tempo-adjusted period proportion ever married (PPEM*) to estimate the extent to which the TFMR is affected by tempo effects. We also decompose the women's TFMR change into its quantum and tempo components from 1970 to 2016 to analyze how much of the changes in TFMR are due to the quantum changes and how much of it is caused by tempo effects. The results show that the tempo effects have had a persistent influence on the period TFMR of Chinese women from 1970 to 2016. The recent decline in the TFMR in Chinese women is mainly due to the first marriage delay, not signaling a retreat from universal marriage.


Asunto(s)
Fertilidad , Matrimonio , Femenino , Humanos , Dinámica Poblacional , China , Países en Desarrollo
2.
Environ Pollut ; 309: 119747, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35835280

RESUMEN

Agricultural tillage practices have a significant impact on the generation and consumption of greenhouse gases (GHGs), the primary causes of global warming. Two tillage systems, conventional tillage (CT) and no-tillage (NT), were compared to evaluate their effects on GHG emissions in this study. Averaged from 2018 to 2020, significant decreases of CO2 and N2O emissions by 7.4% and 51.1% were observed in NT as compared to those of CT. NT was also found to inhibit the soil CH4 uptake. In this study, soil was a source of CO2 and N2O but a sink for CH4. The effect of soil temperature on the fluxes of CO2 was more pronounced than that of soil moisture. However, soil temperature and soil moisture had a weak correlation with CH4 and N2O flux variations. As compared to CT, NT did not affect maize yields but significantly reduced global warming potential (GWP) by 8.07%. For yield-scaled GWP, no significant difference was observed in NT (9.63) and CT (10.71). Taken together, NT was an environment-friendly tillage practice to mitigate GHG emissions in the soil under the tested conditions.


Asunto(s)
Gases de Efecto Invernadero , Agricultura , Dióxido de Carbono/análisis , Metano/análisis , Óxido Nitroso/análisis , Suelo , Zea mays
3.
Sci Total Environ ; 847: 157681, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35908708

RESUMEN

Although straw mulching and nitrogen applications are extensively practiced in the agriculture sector, large uncertainties remain about their impacts on crop yields and especially the environment. The responses of summer maize yields, fertilizer use efficiency, and greenhouse gas (GHG) emissions including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in the North China Plain (NCP) to two straw management practices (S0: no straw and S1: straw mulching) and two nitrogen application rates (N1: 180 and N2: 210 kg N ha-1) were investigated in field tests in 2018, 2019, and 2020. The highest yields and partial factor productivity (PFP) were obtained by S1N1, followed by S1N2, S0N1, and S0N2. S1N2 had the highest CO2 emissions and greatest CH4 uptake, S0N1 had the lowest CO2 emissions, and S0N2 had the smallest CH4 uptake. The highest and lowest N2O emissions were found in S0N1 and S1N1, respectively. The S1N2 treatment, an extensively applied practice, had the greatest global warming potential (GWP), which was 70.3 % larger than S1N1 and two times more than S0N1 and S0N2. The largest GHG emission intensity (GHGI) of 19.4 was found in the S1N2 treatment, while the other three treatments, S0N1, S0N2, and S1N1, had a GHGI of 10.1, 10.7, and 10.7, respectively according to three tested results. In conclusion, S1N1 treatment achieved a better trade-off between crop yields and GHG emissions of summer maize in NCP.


Asunto(s)
Fertilizantes , Gases de Efecto Invernadero , Agricultura/métodos , Dióxido de Carbono , China , Fertilizantes/análisis , Gases de Efecto Invernadero/análisis , Metano/análisis , Nitrógeno , Óxido Nitroso/análisis , Suelo , Zea mays
4.
Sci Total Environ ; 824: 153852, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35181367

RESUMEN

It is a challenge to characterize soil respiration of crop residue return systems in the North China Plain (NCP) under no-tillage (NT) and conventional tillage (CT) practices. In this study, we addressed the "hot spot" research challenge of impacts of tillage practices on soil carbon storage and soil CO2 emissions in the NCP by 13C-isotopic signature. A short-term (2018-2020) field experiment was conducted with two tillage practices: NT and CT. The results showed that in the tested area, NT had advantages of lower CO2 emissions compared to CT with average reduced CO2 emissions by 10.82%-19.14%. The results of this study suggested that the NT facilitated enhanced soil carbon storage by 2.80%, which was evidenced by the δ13C data. Based on the path analysis model, the main line of soil respiration reduced by NT was attributed to the increased of soil microbial carbon and nitrogen as well as soil moisture in NT, which further increased δ13C and eventually inhibited soil respiration. Overall, adopting NT in NCP is an effective means to improve soil carbon pool and decrease soil CO2 emissions in agriculture practices.


Asunto(s)
Dióxido de Carbono , Suelo , Agricultura/métodos , Carbono/análisis , China , Respiración , Suelo/química
5.
Environ Pollut ; 284: 117405, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062430

RESUMEN

River ecosystems are under increasing stress in the background of global change and ever-growing anthropogenic impacts in Central Asia. However, available water quality data in this region are insufficient for a reliable assessment of the current status, which come as no surprise that the limited knowledge of regulating processes for further prediction of solute variations hinders the development of sustainable management strategies. Here, we analyzed a dataset of various water quality variables from two sampling campaigns in 2019 in the catchments of two major rivers in Central Asia-the Amu Darya and Syr Darya Rivers. Our results suggested high spatial heterogeneity of salinity and major ion components along the longitudinal directions in both river catchments, pointing to an increasing influence of human activities toward downstream areas. We linked the modeling outputs from the global nutrient model (IMAGE-GNM) to riverine nutrients to elucidate the effect of different natural and anthropogenic sources in dictating the longitudinal variations of the riverine nutrient concentrations (N and P). Diffuse nutrient loadings dominated the export flux into the rivers, whereas leaching and surface runoff constituted the major fractions for N and P, respectively. Discharge of agricultural irrigation water into the rivers was the major cause of the increases in nutrients and salinity. Given that the conditions in Central Asia are highly susceptible to climate change, our findings call for more efforts to establish holistic management of water quality.


Asunto(s)
Ecosistema , Calidad del Agua , Asia , Monitoreo del Ambiente , Humanos , Ríos
6.
Sci Rep ; 10(1): 7886, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398694

RESUMEN

To understand the groundwater environmental quality and the impact of trace elements in the construction of urban agglomeration in China, this study collected 58 groundwater samples from the core area of the Chang-Zhu-Tan urban agglomeration (Changsha, Zhuzhou, Xiangtan) and quantitatively analyzed the content of 13 dissolved trace element and their spatial distribution characteristics. The health risk assessment model was further used to evaluate the human health risk caused by trace element pollution in groundwater. It was observed that Ba had the highest average concentration (0.28 mg·L-1), whereas Cd had the lowest (2.1 × 10-5 mg·L-1). Compared with China's groundwater environmental quality standard, the exceeding rates of Se, Mn, Zn, and Ni concentrations were 37.93%, 17.24%, 1.72% and 1.72%, respectively. Ba, Cd, Co, Cr, Cu, Fe, Mo, and Pb did not exceed the corresponding standards. The 13 trace elements were distributed in a scattered pattern in space and the trace elements in both banks of the Xiang River, Zhuzhou, Weishui River and surrounding areas were relatively high. Health risk assessments showed that the carcinogenic risk values of Cd, Cr, and Pb and the health risk values of 10 non-carcinogenic elements were less than the corresponding maximum acceptable risk level. The health risks associated with non-carcinogenic substances through ingestion were higher than those associated with dermal absorption. Among the non-carcinogenic substances, Ba and Mn posed the greatest health risks. With respect to drinking water exposure, Cr had the highest carcinogenic risk, followed by Pb. Furthermore, Cd had the lowest carcinogenic risk. This study recommended that continuous monitoring of Ba, Mn, and Cr in groundwater should be practiced by assessing the risk of these elements in the Chang-Zhu-Tan urban agglomeration.

7.
Animals (Basel) ; 9(9)2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-31450836

RESUMEN

This study examined the effects of a high-dose Saccharomyces cerevisiae inoculant alone or jointly with Lactobacillus plantarum on nutrient preservation, fermentation quality, and aerobic stability of sweet corn stalk silage. Fresh stalks (231 g dry matter (DM)/kg) were chopped and subjected to the following treatments: (1) deionized water (Uninoculated; U); (2) S. cerevisiae at 1 × 108 cfu/g of fresh forage (S); and (3) S. cerevisiae at 1 × 108 cfu/g plus L. plantarum at 1 × 105 cfu/g (SL). Treated stalks were ensiled in 5-litre laboratory silos for 30, 60, and 90 d. The S and SL silages had a greater (p < 0.001) pH and greater crude protein, ammonia nitrogen/total nitrogen, neutral detergent fibre, acid detergent fibre, and ethanol contents at all three ensiling periods than the U silage. Acetate, propionate and volatile fatty acids in the S and SL silages after 30 and 90 d of ensiling were greater (p < 0.05) than those in the U silage, but they were lower (p < 0.05) in the S and SL silages than in the U silage after 60 d. The lactate and V-score of the S and SL silages were lower (p < 0.001) than those of the U silage at all three ensiling periods. Compared with the U group, the aerobic stability of the S silage after 90 d of ensiling decreased (p < 0.05), and the aerobic stability of the SL silage was unaffected (p > 0.05). Overall, the quality of sweet corn stalk silage was not improved by inoculation with 108 cfu/g of S. cerevisiae alone or in combination with 1 × 105 cfu/g of L. plantarum.

8.
Sci Total Environ ; 657: 1041-1050, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30677872

RESUMEN

Arid areas cover more than one third of global land, and as such, water resources are vital for this fragile ecosystem. In order to reveal the recharge mechanisms among different water bodies in arid areas, precipitation, surface water, and groundwater were sampled in the Ebinur Lake basin, Xinjiang, China, and the isotopic values for hydrogen and oxygen were measured. The stable isotope values of precipitation showed significant seasonal variation, with minimum values in the winter, medium values in the spring and autumn, and maximum values in the summer. The slope and intercept of local meteoric water line were both lower than that of global meteoric water line, indicating subcloud evaporation effect. The vapor source of precipitation was dominated by the westerlies, but the regional re-evaporation vapor accounted for some proportions as well. In the Bortala River and Jinghe River, the stable isotopic values varied spatially, tending to be enriched with the river flow. The stable isotopic values for lake water were significantly higher than those of river water, which reflected a stronger evaporation and concentration effect of the lake water. The stable isotopic values of groundwater featured similar spatial variation compared to the river, and phreatic water evaporated to some extent. In the Bortala River, owing to its specific hydrogeological structure, the exchange rates between the groundwater and the river water were higher upstream than in the middle and lower reaches. In the Jinghe River, the deep groundwater aquifer received recharge from the shallow groundwater layers and from the river. At the edge of the Ebinur Lake, the interaction of groundwater and surface water was low and springs became the important recharge source for the lake. The results of this study provide insights into the determination of river hydrological processes and the management of water resources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA