Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Viruses ; 14(7)2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35891329

RESUMEN

Increasing evidence suggests that the polymerase acidic (PA) protein of influenza A viruses plays an important role in viral replication and pathogenicity. However, information regarding the interaction(s) of host factors with PA is scarce. By using a yeast two-hybrid screen, we identified a novel host factor, aryl hydrocarbon receptor nuclear translocator (ARNT), that interacts with the PA protein of the H5N1 virus. The interaction between PA and human ARNT was confirmed by co-immunoprecipitation and immunofluorescence microscopy. Moreover, overexpression of ARNT downregulated the polymerase activity and inhibited virus propagation, whereas knockdown of ARNT significantly increased the polymerase activity and virus replication. Mechanistically, overexpression of ARNT resulted in the accumulation of PA protein in the nucleus and inhibited both the replication and transcription of the viral genome. Interaction domain mapping revealed that the bHLH/PAS domain of ARNT mainly interacted with the C-terminal domain of PA. Together, our results demonstrate that ARNT inhibits the replication of the H5N1 virus and could be a target for the development of therapeutic strategies against H5N1 influenza viruses.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Humanos , ARN Polimerasa Dependiente del ARN/metabolismo , Replicación Viral/genética
3.
Appl Opt ; 58(26): 7127-7133, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31503984

RESUMEN

The technology of pattern recognition for vibration events based on the phase-sensitive optical time domain reflectometer (Φ-OTDR) has been significantly improved, thanks to plenty of valuable research in recent years. However, it remains challenging to develop an efficient algorithm for it with computing resources that are simpler to achieve at lower cost. To the best of our knowledge, this paper, for the first time, analyzes the superiority of using graphics processing unit (GPU) parallel computing to improve time-consuming performance in pattern recognition for vibration events based on Φ-OTDR. And the pattern-recognition algorithm, including spectral subtraction and artificial neural networks, is implemented by CPU and GPU, respectively. Then, the time consumption of the CPU-based method and the time consumption of the GPU-based method are, respectively, recorded and compared. As a result of our experiments, we concluded that using GPU parallel computing can develop an efficient algorithm with a computing resource that is simpler to achieve at a lower cost.

4.
PLoS Pathog ; 14(1): e1006851, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29352288

RESUMEN

Transcription and replication of the influenza A virus (IAV) genome occur in the nucleus of infected cells and are carried out by the viral ribonucleoprotein complex (vRNP). As a major component of the vRNP complex, the viral nucleoprotein (NP) mediates the nuclear import of the vRNP complex via its nuclear localization signals (NLSs). Clearly, an effective way for the host to antagonize IAV infection would be by targeting vRNP nuclear import. Here, we identified phospholipid scramblase 1 (PLSCR1) as a binding partner of NP by using a yeast two-hybrid (Y2H) screen. The interaction between NP and PLSCR1 in mammalian cells was demonstrated by using co-immunoprecipitation and pull-down assays. We found that the stable overexpression of PLSCR1 suppressed the nuclear import of NP, hindered the virus life cycle, and significantly inhibited the replication of various influenza subtypes. In contrast, siRNA knockdown or CRISPR/Cas9 knockout of PLSCR1 increased virus propagation. Further analysis indicated that the inhibitory effect of PLSCR1 on the nuclear import of NP was not caused by affecting the phosphorylation status of NP or by stimulating the interferon (IFN) pathways. Instead, PLSCR1 was found to form a trimeric complex with NP and members of the importin α family, which inhibited the incorporation of importin ß, a key mediator of the classical nuclear import pathway, into the complex, thus impairing the nuclear import of NP and suppressing virus replication. Our results demonstrate that PLSCR1 negatively regulates virus replication by interacting with NP in the cytoplasm and preventing its nuclear import.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas del Núcleo Viral/metabolismo , Replicación Viral , Células A549 , Transporte Activo de Núcleo Celular , Animales , Células Cultivadas , Perros , Regulación hacia Abajo , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Proteínas de la Nucleocápside , Unión Proteica , Transporte de Proteínas
5.
J Virol ; 91(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795429

RESUMEN

Influenza A virus (IAV) matrix protein 2 (M2) plays multiple roles in the early and late phases of viral infection. Once synthesized, M2 is translocated to the endoplasmic reticulum (ER), travels to the Golgi apparatus, and is sorted at the trans-Golgi network (TGN) for transport to the apical plasma membrane, where it functions in virus budding. We hypothesized that M2 trafficking along with its secretory pathway must be finely regulated, and host factors could be involved in this process. However, no studies examining the role of host factors in M2 posttranslational transport have been reported. Here, we used a yeast two-hybrid (Y2H) system to screen for host proteins that interact with the M2 protein and identified transport protein particle complex 6A (TRAPPC6A) as a potential binding partner. We found that both TRAPPC6A and its N-terminal internal-deletion isoform, TRAPPC6A delta (TRAPPC6AΔ), interact with M2. Truncation and mutation analyses showed that the highly conserved leucine residue at position 96 of M2 is critical for mediating this interaction. The role of TRAPPC6AΔ in the viral life cycle was investigated by the knockdown of endogenous TRAPPC6AΔ with small interfering RNA (siRNA) and by generating a recombinant virus that was unable to interact with TRAPPC6A/TRAPPC6AΔ. The results indicated that TRAPPC6AΔ, through its interaction with M2, slows M2 trafficking to the apical plasma membrane, favors viral replication in vitro, and positively modulates virus virulence in mice. IMPORTANCE: The influenza A virus M2 protein regulates the trafficking of not only other proteins but also itself along the secretory pathway. However, the host factors involved in the regulation of the posttranslational transport of M2 are largely unknown. In this study, we identified TRAPPC6A and its N-terminal internal-deletion isoform, TRAPPC6AΔ, as interacting partners of M2. We found that the leucine (L) residue at position 96 of M2 is critical for mediating this interaction, which leads us to propose that the high level of conservation of 96L is a consequence of M2 adaptation to its interacting host factor TRAPPC6A/TRAPPC6AΔ. Importantly, we discovered that TRAPPC6AΔ can positively regulate viral replication in vitro by modulating M2 trafficking to the plasma membrane.


Asunto(s)
Interacciones Huésped-Patógeno , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/virología , Proteínas Recombinantes de Fusión/química , Proteínas de Transporte Vesicular/química , Proteínas de la Matriz Viral/química , Animales , Línea Celular Tumoral , Membrana Celular/inmunología , Membrana Celular/virología , Perros , Células Epiteliales/virología , Femenino , Expresión Génica , Células HEK293 , Humanos , Subtipo H1N1 del Virus de la Influenza A/química , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/química , Subtipo H5N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Neuroglía/virología , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/mortalidad , Unión Proteica , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Análisis de Supervivencia , Técnicas del Sistema de Dos Híbridos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/inmunología , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/inmunología , Liberación del Virus/genética , Liberación del Virus/inmunología , Replicación Viral/genética , Replicación Viral/inmunología , Red trans-Golgi/virología
6.
Nat Genet ; 45(7): 776-783, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23749191

RESUMEN

The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A viruses. We present the duck genome sequence and perform deep transcriptome analyses to investigate immune-related genes. Our data indicate that the duck possesses a contractive immune gene repertoire, as in chicken and zebra finch, and this repertoire has been shaped through lineage-specific duplications. We identify genes that are responsive to influenza A viruses using the lung transcriptomes of control ducks and ones that were infected with either a highly pathogenic (A/duck/Hubei/49/05) or a weakly pathogenic (A/goose/Hubei/65/05) H5N1 virus. Further, we show how the duck's defense mechanisms against influenza infection have been optimized through the diversification of its ß-defensin and butyrophilin-like repertoires. These analyses, in combination with the genomic and transcriptomic data, provide a resource for characterizing the interaction between host and influenza viruses.


Asunto(s)
Reservorios de Enfermedades , Patos/genética , Patos/virología , Genoma , Gripe Aviar/genética , Transcriptoma/genética , Animales , Secuencia de Bases , Pollos/genética , Vectores de Enfermedades , Patos/inmunología , Femenino , Gansos/genética , Genoma/fisiología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad/genética , Gripe Aviar/inmunología , Datos de Secuencia Molecular , Filogenia , Especificidad de la Especie
7.
J Virol ; 85(5): 2180-8, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21177821

RESUMEN

During their circulation in nature, H5N1 avian influenza viruses (AIVs) have acquired the ability to kill their natural hosts, wild birds and ducks. The genetic determinants for this increased virulence are largely unknown. In this study, we compared two genetically similar H5N1 AIVs, A/duck/Hubei/49/05 (DK/49) and A/goose/Hubei/65/05 (GS/65), that are lethal for chickens but differ in their virulence levels in ducks. To explore the genetic basis for this difference in virulence, we generated a series of reassortants and mutants of these two viruses. The virulence of the reassortant bearing the PA gene from DK/49 in the GS/65 background increased 10(5)-fold relative to that of the GS/65 virus. Substitution of two amino acids, S224P and N383D, in PA contributed to the highly virulent phenotype. The amino acid 224P in PA increased the replication of the virus in duck embryo fibroblasts, and the amino acid 383D in PA increased the polymerase activity in duck embryo fibroblasts and delayed the accumulation of the PA and PB1 polymerase subunits in the nucleus of virus-infected cells. Our results provide strong evidence that the polymerase PA subunit is a virulence factor for H5N1 AIVs in ducks.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/enzimología , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Animales Domésticos/virología , Pollos , Patos , Subtipo H5N1 del Virus de la Influenza A/genética , Datos de Secuencia Molecular , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...