Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202410659, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136316

RESUMEN

Electroreduction of CO2 into multi-carbon (C2+) products (e.g. C2+ alcohols) offers a promising way for CO2 utilization. Use of strong alkaline electrolytes is favorable to producing C2+ products. However, CO2 can react with hydroxide to form carbonate/bicarbonate, which results in low carbon utilization efficiency and poor stability. Using acidic electrolyte is an efficient way to solve the problems, but it is a challenge to achieve high selectivity of C2+ products. Here we report that the amine modified copper nanoparticles exhibit high selectivity of C2+ products and carbon utilization at acidic condition. The Faradaic efficiency (FE) of C2+ products reach up to 81.8% at acidic media (pH=2) with a total current density of 410 mA cm-2 over n-butylamine modified Cu. Especially the FE of C2+ alcohols is 52.6%, which is higher than those reported for CO2 electroreduction at acidic condition. In addition, the single-pass carbon efficiency towards C2+ production reach up to 60%. Detailed studies demonstrate that the amine molecule on the surface of Cu cannot only enhance the formation, adsorption and coverage of *CO, but also provide a hydrophobic environment, which result in the high selectivity of C2+ alcohols at acidic condition.

2.
Angew Chem Int Ed Engl ; : e202410145, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979674

RESUMEN

Tuning the selectivity of CO2 electroreduction reaction (CO2RR) solely by changing electrolyte is a very attractive topic. In this study, we conducted CO2RR in different aqueous electrolytes over bulk metal electrodes. It was discovered that controlled CO2RR could be achieved by modulating cations in the electrochemical double layer. Specifically, ionic liquid cations in the electrolyte significantly inhibits the hydrogen evolution reaction (HER), while yielding high Faraday efficiencies toward CO (FECO) or formate (FEformate) depending on the alkali metal cations. For example, the product could be switched from CO (FECO = 97.3%) to formate (FEformate = 93.5%) by changing the electrolyte from 0.1 M KBr-0.5 M 1-octyl-3-methylimidazolium bromide (OmimBr) to 0.1 M CsBr-0.5M OmimBr aqueous solutions over pristine Cu foil electrode. In situ spectroscopy and theoretical calculations reveal that the ordered structure generated by the assembly of Omim+ under an applied negative potential alters the hydrogen bonding structure of the interfacial water, thereby inhibiting the HER. The difference in selectivity in the presence of different cations is attributed to the hydrogen bonding effect caused by Omim+, which alters the solvated structure of the alkali metal cations and thus affects the stabilization of intermediates of different pathways.

3.
Nat Commun ; 15(1): 4821, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844773

RESUMEN

Achieving satisfactory multi-carbon (C2+) products selectivity and current density under acidic condition is a key issue for practical application of electrochemical CO2 reduction reaction (CO2RR), but is challenging. Herein, we demonstrate that combining microenvironment modulation by porous channel structure and intrinsic catalytic activity enhancement via doping effect could promote efficient CO2RR toward C2+ products in acidic electrolyte (pH ≤ 1). The La-doped Cu hollow sphere with channels exhibits a C2+ products Faradaic efficiency (FE) of 86.2% with a partial current density of -775.8 mA cm-2. CO2 single-pass conversion efficiency for C2+ products can reach 52.8% at -900 mA cm-2. Moreover, the catalyst still maintains a high C2+ FE of 81.3% at -1 A cm-2. The channel structure plays a crucial role in accumulating K+ and OH- species near the catalyst surface and within the channels, which effectively suppresses the undesired hydrogen evolution and promotes C-C coupling. Additionally, the La doping enhances the generation of *CO intermediate, and also facilitates C2+ products formation.

4.
J Am Chem Soc ; 146(15): 10934-10942, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38581437

RESUMEN

Hydroxylamine (HA, NH2OH) is a critical feedstock in the production of various chemicals and materials, and its efficient and sustainable synthesis is of great importance. Electroreduction of nitrate on Cu-based catalysts has emerged as a promising approach for green ammonia (NH3) production, but the electrosynthesis of HA remains challenging due to overreduction of HA to NH3. Herein, we report the first work on ketone-mediated HA synthesis using nitrate in water. A metal-organic-framework-derived Cu catalyst was developed to catalyze the reaction. Cyclopentanone (CP) was used to capture HA in situ to form CP oxime (CP-O) with C═N bonds, which is prone to hydrolysis. HA could be released easily after electrolysis, and CP was regenerated. It was demonstrated that CP-O could be formed with an excellent Faradaic efficiency of 47.8%, a corresponding formation rate of 34.9 mg h-1 cm-2, and a remarkable carbon selectivity of >99.9%. The hydrolysis of CP-O to release HA and CP regeneration was also optimized, resulting in 96.1 mmol L-1 of HA stabilized in the solution, which was significantly higher than direct nitrate reduction. Detailed in situ characterizations, control experiments, and theoretical calculations revealed the catalyst surface reconstruction and reaction mechanism, which showed that the coexistence of Cu0 and Cu+ facilitated the protonation and reduction of *NO2 and *NH2OH desorption, leading to the enhancement for HA production.

5.
Chem Sci ; 15(9): 3233-3239, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38425518

RESUMEN

Urea electrosynthesis under ambient conditions is emerging as a promising alternative to conventional synthetic protocols. However, the weak binding of reactants/intermediates on the catalyst surface induces multiple competing pathways, hindering efficient urea production. Herein, we report the synthesis of defective Co3O4 catalysts that integrate dual-functional sites for urea production from CO2 and nitrite. Regulating the reactant adsorption capacity on defective Co3O4 catalysts can efficiently control the competing reaction pathways. The urea yield rate of 3361 mg h-1 gcat-1 was achieved with a corresponding faradaic efficiency (FE) of 26.3% and 100% carbon selectivity at a potential of -0.7 V vs. the reversible hydrogen electrode. Both experimental and theoretical investigations reveal that the introduction of oxygen vacancies efficiently triggers the formation of well-matched adsorption/activation sites, optimizing the adsorption of reactants/intermediates while decreasing the C-N coupling reaction energy. This work offers new insights into the development of dual-functional catalysts based on non-noble transition metal oxides with oxygen vacancies, enabling the efficient electrosynthesis of essential C-N fine chemicals.

6.
J Am Chem Soc ; 146(14): 10084-10092, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38530325

RESUMEN

Glycine is a nonessential amino acid that plays a vital role in various biological activities. However, the conventional synthesis of glycine requires sophisticated procedures or toxic feedstocks. Herein, we report an electrochemical pathway for glycine synthesis via the reductive coupling of oxalic acid and nitrate or nitrogen oxides over atomically dispersed Fe-N-C catalysts. A glycine selectivity of 70.7% is achieved over Fe-N-C-700 at -1.0 V versus RHE. Synergy between the FeN3C structure and pyrrolic nitrogen in Fe-N-C-700 facilitates the reduction of oxalic acid to glyoxylic acid, which is crucial for producing glyoxylic acid oxime and glycine, and the FeN3C structure could reduce the energy barrier of *HOOCCH2NH2 intermediate formation thus accelerating the glyoxylic acid oxime conversion to glycine. This new synthesis approach for value-added chemicals using simple carbon and nitrogen sources could provide sustainable routes for organonitrogen compound production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA