Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 34(50): e2207020, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36263872

RESUMEN

A critical bottleneck for further efficiency breakthroughs in organic solar cells (OSCs) is to minimize the non-radiative energy loss (eΔVnr ) while maximizing the charge generation. With the development of highly emissive low-bandgap non-fullerene acceptors, the design of high-performance donors becomes critical to enable the blend with the electroluminescence quantum efficiency to approach or surpass the pristine acceptor. Herein, by shortening the end-capped alkyl chains of the small-molecular donors from hexyl (MPhS-C6) to ethyl (MPhS-C2), the material obtained aggregation that was insensitive to thermal annealing (TA) along with condensed packing simultaneously. The former leads to small phase separation and suppressed upshifts of the highest occupied molecular orbital energy level during TA, and the latter facilitates its efficient charge-transport at aggregation-less packing. Hence, the ΔVnr decreases from 0.242 to 0.182 V, from MPhS-C6 to MPhS-C2 based OSCs. An excellent PCE of 17.11% is obtained by 1,8-diiodoctane addition due to almost unchanged high Jsc (26.6 mA cm-2 ) and Voc (0.888 V) with improved fill factor, which is the record efficiency with the smallest energy loss (0.497 eV) and ΔVnr (0.192 V) in all-small-molecule OSCs. These results emphasize the potential material design direction of obtaining concurrent TA-insensitive aggregation and condensed packing to maximize the device performances with a super low ΔVnr .

2.
Angew Chem Int Ed Engl ; 61(38): e202208383, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-35869870

RESUMEN

Efficient cathode interfacial layers (CILs) are becoming essential elements for organic solar cells (OSCs). However, the absorption of commonly used cathode interfacial materials (CIMs) is either too weak or overlaps too much with that of photoactive materials, hindering their contribution to the light absorption. In this work, we demonstrate the construction of highly efficient CIMs based on 2,7-di-tert-butyl-4,5,9,10-pyrene diimide (t-PyDI) framework. By introducing amino, amino N-oxide and quaternary ammonium bromide as functional groups, three novel self-doped CIMs named t-PyDIN, t-PyDINO and t-PyDINBr are synthesized. These CIMs are capable of boosting the device performances by broadening the absorption, forming ohmic contact at the interface of active layer and electrode, as well as facilitating electron collection. Notably, the device based on t-PyDIN achieved a power conversion efficiency of 18.25 %, which is among the top efficiencies reported to date in binary OSCs.

3.
Adv Mater ; 34(31): e2202659, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35698785

RESUMEN

Organic solar cells (OSCs) are promising candidates for next-generation photovoltaic technologies, with their power conversion efficiencies (PCEs) reaching 19%. However, the typically used spin-coating method, toxic halogenated processing solvents, and the conventional bulk-heterojunction (BHJ), which causes excessive charge recombination, hamper the commercialization and further efficiency promotion of OSCs. Here, a simple but effective dual-slot-die sequential processing (DSDS) strategy is proposed to address the above issues by achieving a continuous solution supply, avoiding the solubility limit of the nonhalogen solvents, and creating a graded-BHJ morphology. As a result, an excellent PCE of 17.07% is obtained with the device processed with o-xylene in an open-air environment with no post-treatment required, while a PCE of over 14% is preserved in a wide range of active-layer thickness. The unique film-formation mechanism is further identified during the DSDS processing, which suggests the formation of the graded-BHJ morphology by the mutual diffusion between the donor and acceptor and the subsequent progressive aggregation. The graded-BHJ structure leads to improved charge transport, inhibited charge recombination, and thus an excellent PCE. Therefore, the newly developed DSDS approach can effectively contribute to the realm of high-efficiency and eco-friendly OSCs, which can also possibly be generalized to other organic photoelectric devices.

4.
Chemphyschem ; 23(2): e202100725, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34791762

RESUMEN

Adding insulating polymers to conjugated polymers is an efficient strategy to tailor their mechanical properties for flexible organic electronics. In this work, we selected two insulating polymers as additives for high-performance photoactive layers and investigated the mechanical and photovoltaic properties in organic solar cells (OSCs). The insulating polymers were found to reduce the electron mobilities in the photoactive layers, and hence the power conversion efficiencies were significantly decreased. More importantly, we found that the insulating polymers exhibited negative effect on the mechanical properties of the photoactive layers, with reduced Young's modulus and low crack onset strains. Further studies revealed that the insulating polymers had poor miscibility with the photoactive layers, providing large domains and more cavities in blend thin films, which act as negative effect for the tensile test. The studies indicate that rational selection of insulating polymers, especially enhancing the non-covalent interaction with the photoactive layers, will be critically important for the stretchable OSCs.

5.
Small Methods ; 5(9): e2100481, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34928045

RESUMEN

Owing to the advantages of being lightweight and compatible with surfaces with different deformations, flexible organic solar cells (OSCs) have broad scopes of applications, including wearable electronics and portable devices. Most flexible OSCs focus on the two-component bulk-heterojunction (BHJ) photo-active layers, but they usually suffer from degradation problems both in efficiency and mechanical durability derived from the limited phase stability under mechanical and thermal stress. Whereas, single-component organic solar cells (SCOSCs) based on the double-cable conjugated polymer are supposed to possess excellent mechanical robustness and long-term stability. Here, the first flexible SCOSCs based on a double-cable polymer are fabricated on a transparent silver nanowires (AgNWs) electrode on a plastic foil. Impressively, the obtained flexible SCOSCs exhibited a power conversion efficiency (PCE) of 7.21%. The flexible SCOSCs are further demonstrated to possess superior mechanical robustness (>95% retention after 1000 bending cycles) and storage stability (>97% retention after 430 h in nitrogen atmosphere) compared to several BHJ-type flexible OSCs. The pseudo-free-standing tensile test and morphology investigation are conducted to reveal the distinction in mechanical durability of the single-component polymer film and the BHJ-type films. Besides, ultraflexible SCOSCs are also fabricated, indicating the application prospect and superiority in flexible devices and wearable electronic products.

6.
Small ; 17(21): e2007011, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33719196

RESUMEN

Promoting efficiency, deformability, and life expectancy of stretchable organic solar cells (OSCs) have always been key concerns that researchers are committed to solving. However, how to improve them simultaneously remains challenging, as morphology parameters, such as ordered molecular arrangement, beneficial for highly efficient devices actually limits mechanical stability and deformability. In this study, the unfavorable trade-off among these properties has been reconciled in an all-polymer model system utilizing a mechanically deformable guest component. The success of this strategy stems from introducing a highly ductile component without compromising the pristine optimized morphology. Preferable interaction between two donors can maintain the fiber-like structure while enhancing the photocurrent to improve efficiency. Morphology evolution detected via grazing incidence X-ray scattering and in situ UV-vis absorption spectra during stretching have verified the critical role of strengthened interaction on stabilizing morphology against external forces. The strengthened interaction also benefits thermal stability, enabling the ternary films with small efficiency degradation after heating 1500 h under 80 °C. This work highlights the effect of morphology evolution on mechanical stability and provides new insights from the view of intermolecular interaction to fabricate highly efficient, stable, and stretchable/wearable OSCs.

7.
ACS Appl Mater Interfaces ; 10(38): 32454-32461, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30168315

RESUMEN

In this work, we developed four porphyrin-based small molecular electron acceptors for non-fullerene organic solar cells, in which different side groups attached to the porphyrin core were selected in order to achieve optimized performance. The molecules contain porphyrin as the core, perylene bisimides as end groups, and the ethynyl unit as the linker. Four side groups, from 2,6-di(dodecyloxy)phenyl to (2-ethylhexyl)thiophen-2-yl, pentadecan-7-yl, and 3,5-di(dodecyloxy)phenyl unit, were applied into the electron acceptors. The new molecules exhibit broad absorption spectra from 300 to 900 nm and high molar extinction coefficients. The molecules as electron acceptors were applied into organic solar cells, showing increased power conversion efficiencies from 1.84 to 5.34%. We employed several techniques, including photoluminescence spectra, electroluminescence spectra, atomic force microscopy, and grazing-incidence wide-angle X-ray to probe the blends to find the effects of the side groups on the photovoltaic properties. We found that the electron acceptors with 2,6-di(dodecyloxy)phenyl units show high-lying frontier energy levels, good crystalline properties, and low nonradiative recombination loss, resulting in possible large phase separation and low energy loss, which is responsible for the low performance. Our results provide a detailed study about the side groups of non-fullerene materials, demonstrating that porphyrin can be used to design electron acceptors toward near-infrared absorption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...