Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(20): eadm8096, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758798

RESUMEN

Organic matter (OM) transformations in marine sediments play a crucial role in the global carbon cycle. However, secondary production and priming have been ignored in marine biogeochemistry. By incubating shelf sediments with various 13C-labeled algal substrates for 400 days, we show that ~65% of the lipids and ~20% of the proteins were mineralized by numerically minor heterotrophic bacteria as revealed by RNA stable isotope probing. Up to 11% of carbon from the algal lipids was transformed into the biomass of secondary producers as indicated by 13C incorporation in amino acids. This biomass turned over throughout the experiment, corresponding to dynamic microbial shifts. Algal lipid addition accelerated indigenous OM degradation by 2.5 to 6 times. This priming was driven by diverse heterotrophic bacteria and sulfur- and iron-cycling bacteria and, in turn, resulted in extra secondary production, which exceeded that stimulated by added substrates. These interactions between degradation, secondary production, and priming govern the eventual fate of OM in marine sediments.


Asunto(s)
Sedimentos Geológicos , Sedimentos Geológicos/química , Biomasa , Bacterias/metabolismo , Ciclo del Carbono , Carbono/metabolismo , Carbono/química , Isótopos de Carbono , Lípidos/química , Compuestos Orgánicos/química
2.
Microbiome ; 12(1): 68, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570877

RESUMEN

BACKGROUND: The trophic strategy is one key principle to categorize microbial lifestyles, by broadly classifying microorganisms based on the combination of their preferred carbon sources, electron sources, and electron sinks. Recently, a novel trophic strategy, i.e., chemoorganoautotrophy-the utilization of organic carbon as energy source but inorganic carbon as sole carbon source-has been specifically proposed for anaerobic methane oxidizing archaea (ANME-1) and Bathyarchaeota subgroup 8 (Bathy-8). RESULTS: To further explore chemoorganoautotrophy, we employed stable isotope probing (SIP) of nucleic acids (rRNA or DNA) using unlabeled organic carbon and 13C-labeled dissolved inorganic carbon (DIC), i.e., inverse stable isotope labeling, in combination with metagenomics. We found that ANME-1 archaea actively incorporated 13C-DIC into RNA in the presence of methane and lepidocrocite when sulfate was absent, but assimilated organic carbon when cellulose was added to incubations without methane additions. Bathy-8 archaea assimilated 13C-DIC when lignin was amended; however, their DNA was derived from both inorganic and organic carbon sources rather than from inorganic carbon alone. Based on SIP results and supported by metagenomics, carbon transfer between catabolic and anabolic branches of metabolism is possible in these archaeal groups, indicating their anabolic versatility. CONCLUSION: We provide evidence for the incorporation of the mixed organic and inorganic carbon by ANME-1 and Bathy-8 archaea in the environment. Video Abstract.


Asunto(s)
Archaea , Metano , Archaea/genética , Marcaje Isotópico , Oxidación-Reducción , Metano/metabolismo , Carbono/metabolismo , ADN , Anaerobiosis , Sedimentos Geológicos , Filogenia
3.
Geobiology ; 22(2): e12589, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38465505

RESUMEN

The Black Sea is a permanently anoxic, marine basin serving as model system for the deposition of organic-rich sediments in a highly stratified ocean. In such systems, archaeal lipids are widely used as paleoceanographic and biogeochemical proxies; however, the diverse planktonic and benthic sources as well as their potentially distinct diagenetic fate may complicate their application. To track the flux of archaeal lipids and to constrain their sources and turnover, we quantitatively examined the distributions and stable carbon isotopic compositions (δ13 C) of intact polar lipids (IPLs) and core lipids (CLs) from the upper oxic water column into the underlying sediments, reaching deposits from the last glacial. The distribution of IPLs responded more sensitively to the geochemical zonation than the CLs, with the latter being governed by the deposition from the chemocline. The isotopic composition of archaeal lipids indicates CLs and IPLs in the deep anoxic water column have negligible influence on the sedimentary pool. Archaeol substitutes tetraether lipids as the most abundant IPL in the deep anoxic water column and the lacustrine methanic zone. Its elevated IPL/CL ratios and negative δ13 C values indicate active methane metabolism. Sedimentary CL- and IPL-crenarchaeol were exclusively derived from the water column, as indicated by non-variable δ13 C values that are identical to those in the chemocline and by the low BIT (branched isoprenoid tetraether index). By contrast, in situ production accounts on average for 22% of the sedimentary IPL-GDGT-0 (glycerol dibiphytanyl glycerol tetraether) based on isotopic mass balance using the fermentation product lactate as an endmember for the dissolved substrate pool. Despite the structural similarity, glycosidic crenarchaeol appears to be more recalcitrant in comparison to its non-cycloalkylated counterpart GDGT-0, as indicated by its consistently higher IPL/CL ratio in sediments. The higher TEX86 , CCaT, and GDGT-2/-3 values in glacial sediments could plausibly result from selective turnover of archaeal lipids and/or an archaeal ecology shift during the transition from the glacial lacustrine to the Holocene marine setting. Our in-depth molecular-isotopic examination of archaeal core and intact polar lipids provided new constraints on the sources and fate of archaeal lipids and their applicability in paleoceanographic and biogeochemical studies.


Asunto(s)
Archaea , Éteres de Glicerilo , Agua , Archaea/química , Mar Negro , Sedimentos Geológicos/química , Glicerol , Lípidos/química , Agua de Mar/química
4.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365251

RESUMEN

Significant amounts of organic carbon in marine sediments are degraded, coupled with sulfate reduction. However, the actual carbon and energy sources used in situ have not been assigned to each group of diverse sulfate-reducing microorganisms (SRM) owing to the microbial and environmental complexity in sediments. Here, we probed microbial activity in temperate and permanently cold marine sediments by using potential SRM substrates, organic fermentation products at very low concentrations (15-30 µM), with RNA-based stable isotope probing. Unexpectedly, SRM were involved only to a minor degree in organic fermentation product mineralization, whereas metal-reducing microbes were dominant. Contrastingly, distinct SRM strongly assimilated 13C-DIC (dissolved inorganic carbon) with H2 as the electron donor. Our study suggests that canonical SRM prefer autotrophic lifestyle, with hydrogen as the electron donor, while metal-reducing microorganisms are involved in heterotrophic organic matter turnover, and thus regulate carbon fluxes in an unexpected way in marine sediments.


Asunto(s)
Sedimentos Geológicos , Sulfatos , Sedimentos Geológicos/química , Sulfatos/metabolismo , Carbono/metabolismo , Procesos Heterotróficos , Fermentación
5.
Adv Mater ; 35(42): e2303632, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37435992

RESUMEN

With the development of various gel-based flexible sensors, novel gels with multiple integrated and efficient properties, particularly recyclability, have been developed. Herein, a starch-based ADM (amylopectin (AP)-poly(3-[dimethyl-[2-(2-methylprop-2- enoyloxy)ethyl]azaniumyl]propane-1-sulfonate) (PDMAPS)-MXene) gel is prepared by a facile "cooking" strategy accompanying the gelatinization of AP and polymerization reaction of zwitterionic monomers. Reversible crosslinking in the gel occurs through hydrogen bonding and electrostatic interactions. The ADM gel exhibits high stretchability (≈2700%, after one month), swift self-healing performance, self-adhesive properties, favorable freezing resistance, and satisfactory moisturizing properties (≥30 days). Interestingly, the ADM gel can be recycled and reused by a "kneading" method and "dissolution-dialysis" process, respectively. Furthermore, the ADM gel can be assembled as a strain sensor with a broad working strain range (≈800%) and quick response time (response time 211 ms and recovery time 253 ms, under 10% strain) to detect various macro- and micro-human-motions, even under harsh conditions such as pronunciation and handwriting. The ADM gel can also be used as a humidity sensor to investigate humidity and human respiratory status, suggesting its practical application in personal health management. This study provides a novel strategy for the preparation of high-performance recycled gels and flexible sensors.

6.
Gels ; 8(11)2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36421573

RESUMEN

Design and preparation of gels with excellent mechanical properties has garnered wide interest at present. In this paper, preparation of polyvinyl alcohol (PVA)-tannic acid (TA) gels with exceptional properties is documented. The crystallization zone and hydrogen bonding acted as physical crosslinkages fabricated by a combination of freeze-thaw treatment and a tannic acid compound. The effect of tannic acid on mechanical properties of prepared PVA-TA gels was investigated and analyzed. When the mass fraction of PVA was 20.0 wt% and soaking time was 12 h in tannic acid aqueous solution, tensile strength and the elongation at break of PVA-TA gel reached 5.97 MPa and 1450%, respectively. This PVA-TA gel was far superior to a pure 20.0 wt% PVA hydrogel treated only with the freeze-thaw process, as well as most previously reported PVA-TA gels. The toughness of a PVA-TA gel is about 14 times that of a pure PVA gel. In addition, transparent PVA-TA gels can effectively prevent ultraviolet-light-induced degradation. This study provides a novel strategy and reference for design and preparation of high-performance gels that are promising for practical application.

7.
Front Microbiol ; 13: 912299, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35722308

RESUMEN

Consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria mediate the anaerobic oxidation of methane (AOM) in marine sediments. However, even sediment-free cultures contain a substantial number of additional microorganisms not directly related to AOM. To track the heterotrophic activity of these community members and their possible relationship with AOM, we amended meso- (37°C) and thermophilic (50°C) AOM cultures (dominated by ANME-1 archaea and their partner bacteria of the Seep-SRB2 clade or Candidatus Desulfofervidus auxilii) with L-leucine-3-13C (13C-leu). Various microbial lipids incorporated the labeled carbon from this amino acid, independent of the presence of methane as an energy source, specifically bacterial fatty acids, such as iso and anteiso-branched C15:0 and C17:0, as well as unsaturated C18:1ω9 and C18:1ω7. In natural methane-rich environments, these bacterial fatty acids are strongly 13C-depleted. We, therefore, suggest that those fatty acids are produced by ancillary bacteria that grow on 13C-depleted necromass or cell exudates/lysates of the AOM core communities. Candidates that likely benefit from AOM biomass are heterotrophic bacterial members of the Spirochetes and Anaerolineae-known to produce abundant branched fatty acids and present in all the AOM enrichment cultures. For archaeal lipids, we observed minor 13C-incorporation, but still suggesting some 13C-leu anabolism. Based on their relatively high abundance in the culture, the most probable archaeal candidates are Bathyarchaeota, Thermoplasmatales, and Lokiarchaeota. The identified heterotrophic bacterial and archaeal ancillary members are likely key players in organic carbon recycling in anoxic marine sediments.

8.
ISME J ; 16(6): 1617-1626, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35220398

RESUMEN

Metagenomic analysis has facilitated prediction of a variety of carbon utilization potentials by uncultivated archaea including degradation of protein, which is a wide-spread carbon polymer in marine sediments. However, the activity of detrital catabolic protein degradation is mostly unknown for the vast majority of archaea. Here, we show actively executed protein catabolism in three archaeal phyla (uncultivated Thermoplasmata, SG8-5; Bathyarchaeota subgroup 15; Lokiarchaeota subgroup 2c) by RNA- and lipid-stable isotope probing in incubations with different marine sediments. However, highly abundant potential protein degraders Thermoprofundales (MBG-D) and Lokiarchaeota subgroup 3 were not incorporating 13C-label from protein during incubations. Nonetheless, we found that the pathway for protein utilization was present in metagenome associated genomes (MAGs) of active and inactive archaea. This finding was supported by screening extracellular peptidases in 180 archaeal MAGs, which appeared to be widespread but not correlated to organisms actively executing this process in our incubations. Thus, our results have important implications: (i) multiple low-abundant archaeal groups are actually catabolic protein degraders; (ii) the functional role of widespread extracellular peptidases is not an optimal tool to identify protein catabolism, and (iii) catabolic degradation of sedimentary protein is not a common feature of the abundant archaeal community in temperate and permanently cold marine sediments.


Asunto(s)
Archaea , Sedimentos Geológicos , Archaea/genética , Archaea/metabolismo , Carbono/metabolismo , Péptido Hidrolasas/metabolismo , Filogenia , Proteolisis , ARN Ribosómico 16S/metabolismo
9.
Polymers (Basel) ; 13(15)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34371994

RESUMEN

Precise control of target molecule release time, site, and dosage remains a challenge in controlled release systems. We employed a photoresponsive molecule release system via light-triggered charge reversal nanoparticles to achieve a triggered, stepwise, and precise controlled release platform. This release system was based on photocleavage-bridged polysilsesquioxane nanoparticles which acted as nanocarriers of doxorubicin loaded on the surface via electrostatic interaction. The nanoparticles could reverse into positive charges triggered by 254 nm light irradiation due to the photocleavage of the o-nitrobenzyl bridged segment. The charge reversal property of the nanoparticles could release loaded molecules. Doxorubicin was selected as a positively charged model molecule. The as-prepared nanoparticles with an average size of 124 nm had an acceptable doxorubicin loading content up to 12.8%. The surface charge of the nanoparticles could rapidly reverse from negative (-28.20 mV) to positive (+18.9 mV) upon light irradiation for only 10 min. In vitro release experiments showed a cumulative release up to 96% with continuously enhancing irradiation intensity. By regulating irradiation parameters, precisely controlled drug release was carried out. The typical "stepped" profile could be accurately controlled in an on/off irradiation mode. This approach provides an ideal light-triggered molecule release system for location, timing, and dosage. This updated controlled release system, triggered by near-infrared or infrared light, will have greater potential applications in biomedical technology.

10.
ACS Appl Mater Interfaces ; 13(30): 36370-36379, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34297533

RESUMEN

Protein micropatterning on microfabricated surfaces is a promising technology in applications for biochip microarrays, cell attachment, and biosensors. In the present work, a novel photoresponsive polymer based on light-triggered charge shifting bridged polysilsesquioxane (CBPS) is designed and prepared. The organic bridged units containing a photocleavable group of diethylaminocoumarin-4-yl in CBPS could be cleaved rapidly upon irradiation at 410 nm, resulting in the polymer surface switching from a positive charge to a negative charge property. The photoresponsive behavior of CBPS is studied using FTIR, UV-vis, SEM, fluorescence microscopy, and zeta potential analysis. Proteins are easily immobilized on the polymer surface via electrostatic interactions and released after irradiation as required. Combined with photopatterning techniques, accurate protein micropatterns are fabricated by covering a photomask upon irradiation. A gradient protein pattern is also spatially and temporally controlled by regulating irradiation parameters. This smart photoresponsive polymer surface provides a gentle and straightforward strategy to micropattern charged proteins. Moreover, the photoresponsive polymer holds permitting potential in biomedical applications such as conjugating biomolecules, guiding cell arrays, and resisting bacteria.


Asunto(s)
Proteínas Inmovilizadas/química , Compuestos de Organosilicio/química , Adsorción/efectos de la radiación , Animales , Bovinos , Cumarinas/química , Cumarinas/efectos de la radiación , Luz , Compuestos de Organosilicio/efectos de la radiación , Albúmina Sérica Bovina/química , Electricidad Estática , Propiedades de Superficie
11.
ISME J ; 14(6): 1547-1560, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32203118

RESUMEN

Sediment-hosted CO2-rich aquifers deep below the Colorado Plateau (USA) contain a remarkable diversity of uncultivated microorganisms, including Candidate Phyla Radiation (CPR) bacteria that are putative symbionts unable to synthesize membrane lipids. The origin of organic carbon in these ecosystems is unknown and the source of CPR membrane lipids remains elusive. We collected cells from deep groundwater brought to the surface by eruptions of Crystal Geyser, sequenced the community, and analyzed the whole community lipidome over time. Characteristic stable carbon isotopic compositions of microbial lipids suggest that bacterial and archaeal CO2 fixation ongoing in the deep subsurface provides organic carbon for the complex communities that reside there. Coupled lipidomic-metagenomic analysis indicates that CPR bacteria lack complete lipid biosynthesis pathways but still possess regular lipid membranes. These lipids may therefore originate from other community members, which also adapt to high in situ pressure by increasing fatty acid unsaturation. An unusually high abundance of lysolipids attributed to CPR bacteria may represent an adaptation to membrane curvature stress induced by their small cell sizes. Our findings provide new insights into the carbon cycle in the deep subsurface and suggest the redistribution of lipids into putative symbionts within this community.


Asunto(s)
Dióxido de Carbono/metabolismo , Agua Subterránea/microbiología , Archaea/genética , Procesos Autotróficos , Bacterias/genética , Carbono/metabolismo , Ciclo del Carbono , Colorado , Ecosistema , Lípidos/análisis , Metagenoma , Filogenia
12.
Front Microbiol ; 10: 3041, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32010098

RESUMEN

The flux of methane, a potent greenhouse gas, from the seabed is largely controlled by anaerobic oxidation of methane (AOM) coupled to sulfate reduction (S-AOM) in the sulfate methane transition (SMT). S-AOM is estimated to oxidize 90% of the methane produced in marine sediments and is mediated by a consortium of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacteria. An additional methane sink, i.e., iron oxide coupled AOM (Fe-AOM), has been suggested to be active in the methanic zone of marine sediments. Geochemical signatures below the SMT such as high dissolved iron, low to undetectable sulfate and high methane concentrations, together with the presence of iron oxides are taken as prerequisites for this process. So far, Fe-AOM has neither been proven in marine sediments nor have the governing key microorganisms been identified. Here, using a multidisciplinary approach, we show that Fe-AOM occurs in iron oxide-rich methanic sediments of the Helgoland Mud Area (North Sea). When sulfate reduction was inhibited, different iron oxides facilitated AOM in long-term sediment slurry incubations but manganese oxide did not. Especially magnetite triggered substantial Fe-AOM activity and caused an enrichment of ANME-2a archaea. Methane oxidation rates of 0.095 ± 0.03 nmol cm-3 d-1 attributable to Fe-AOM were obtained in short-term radiotracer experiments. The decoupling of AOM from sulfate reduction in the methanic zone further corroborated that AOM was iron oxide-driven below the SMT. Thus, our findings prove that Fe-AOM occurs in methanic marine sediments containing mineral-bound ferric iron and is a previously overlooked but likely important component in the global methane budget. This process has the potential to sustain microbial life in the deep biosphere.

13.
Macromol Rapid Commun ; 40(5): e1800252, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30027623

RESUMEN

Novel graphene-oxide-reinforced silicone composites (GOSC) are prepared by in situ polymerization of silanes and low concentrations (<0.15 wt%) of silylated GO (SGO). After modification, the distances of the SGO nanosheets are successfully increased from 0.72 to 0.87 nm. Compared with GO, the SGO shows better dispersibility in organic solvents as well as remarkably enhanced decomposition temperature (T d improved by 100 °C). After covalently grafting onto silicone resins via in situ polymerization, the obtained GOSC exhibits greatly enhanced thermal stability (T d up to 400 °C and T g improved by 3-5 °C), increased storage modulus, loss modulus, and complex viscosity. The morphology, microstructure, interfacial adhesion of the developed GOSC coatings were carefully investigated. The GOSC coatings on metal exhibit good transparency (up to 90%), hydrophobicity, and excellent anticorrosion capability. This work provides a new strategy for developing high performance graphene-based silicone composite materials.


Asunto(s)
Grafito/síntesis química , Polimerizacion , Siliconas/síntesis química , Rastreo Diferencial de Calorimetría , Corrosión , Grafito/química , Dispersión del Ángulo Pequeño , Siliconas/química , Termogravimetría , Difracción de Rayos X
14.
Materials (Basel) ; 11(5)2018 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-29757263

RESUMEN

α-Amine ketoximesilanes are proven to be effective crosslinkers in the preparation of ketone-oxime one-component room temperature vulcanized (RTV) silicone rubber without the use of toxic metal catalyst. This work aimed to investigate the hydrolysis kinetic of α-amine ketoximesilanes, which is vitally important for the preparation of RTV silicone rubber. Five kinds of α-amine ketoximesilanes, namely α-(N,N-diethyl)aminomethyltri(methylethylketoxime)silane (DEMOS), α-(N,N-di-n-butyl)aminomethyltri(methylethylketoxime)silane (DBMOS), α-(N-n-butyl)aminomethyltri(methylethylketoxime)silane (n-BMOS), α-(N-cyclohexyl)aminomethyltri(methylethylketoxime)silane (CMOS) and α-(β-aminomethyl)aminomethyltri(methylethylketoxime)silane (AEMOS), were successfully obtained and confirmed using Fourier transform infrared spectrometer (FT-IR) and hydrogen-1 nuclear magnetic resonance ( ¹H NMR). Kinetics of hydrolysis reactions were measured by FT-IR and conductivity. Our results illustrated that the kinetic constant rates ranged from 12.2 × 10−4 s−1 to 7.6 × 10−4 s−1, with the decreasing order of DEMOS > n-BMOS > DBMOS > CMOS > AEMOS at the given temperature and humidity. Better performances of thermal stability could be achieved when using the α-amine ketoximesilanes as crosslinkers in the preparation of RTV silicon rubber than that of RTV silicone rubber with the use of methyltri(methylethylketoxime)silane (MOS) as a crosslinker and organic tin as a catalyst.

15.
Carbohydr Polym ; 185: 12-18, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29421047

RESUMEN

We investigated the dissolution state of cellulose in NaOH/urea aqueous solution using molecular dynamics simulations. All the components, including cellulose, NaOH, urea and H2O were combined into one simulation. A clear and detailed description for the formation of cellulose inclusion complexes has been stated. The simulation results showed that the cellulose inclusion complexes exhibited anisotropic properties. In this system, the sodium ions and hydroxide ions located at the regions of hydroxyl and hydroxymethyl groups in cellulose molecules. However, the urea molecules occupied the faces of the hydrophobic pyranose rings. The hydrogen-bonding configuration and lifetime of hydrogen bonds in cellulose inclusion complexes were also systematically characterized. The spatial structure of inclusion complexes, the hydrogen-bonding interaction between cellulose and solvent molecules, the diffusive property of solvent molecules and the distribution of water-water angles in cellulose inclusion complexes were discussed in details. The NaOH, urea and H2O molecules surrounding the cellulose chain within radial distance 0.35 nm have smaller diffusion coefficients than those in bulk state. The water-water angles provide a quantitative estimate of hydrophobic effect of cellulose.

16.
Environ Sci Technol ; 51(21): 12293-12301, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-28965392

RESUMEN

Anaerobic oxidation of methane (AOM) was shown to reduce methane emissions by over 50% in freshwater systems, its main natural contributor to the atmosphere. In these environments iron oxides can become main agents for AOM, but the underlying mechanism for this process has remained enigmatic. By conducting anoxic slurry incubations with lake sediments amended with 13C-labeled methane and naturally abundant iron oxides the process was evidenced by significant 13C-enrichment of the dissolved inorganic carbon pool and most pronounced when poorly reactive iron minerals such as magnetite and hematite were applied. Methane incorporation into biomass was apparent by strong uptake of 13C into fatty acids indicative of methanotrophic bacteria, associated with increasing copy numbers of the functional methane monooxygenase pmoA gene. Archaea were not directly involved in full methane oxidation, but their crucial participation, likely being mediators in electron transfer, was indicated by specific inhibition of their activity that fully stopped iron-coupled AOM. By contrast, inhibition of sulfur cycling increased 13C-methane turnover, pointing to sulfur species involvement in a competing process. Our findings suggest that the mechanism of iron-coupled AOM is accomplished by a complex microbe-mineral reaction network, being likely representative of many similar but hidden interactions sustaining life under highly reducing low energy conditions.


Asunto(s)
Anaerobiosis , Archaea , Metano , Sedimentos Geológicos , Hierro , Minerales , Oxidación-Reducción , Sulfatos
17.
Chemistry ; 22(18): 6286-93, 2016 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-26929087

RESUMEN

Obtaining π-conjugated room temperature ionic liquids (RTILs) is difficult because of the relatively strong π-π interaction among the π-moieties. Existing strategies by using bulky counterions greatly hindered further property optimization and potential applications of these intriguing functional fluids through simple ion exchange. Herein, four naphthalene-functionalized, π-conjugated RTILs with small counterions (Br(-) ) have been facilely synthesized with high yields. Our strategy is to attach branched alkyl chains to the cationic backbone of the target compounds (2 a-d), which effectively tune inter- and intramolecular interactions. Compounds 2 a-d have satisfactory thermal stability (up to 300 °C) and low melting points (<-19 °C). Rheological measurements revealed the fluid character of 2 a-d, whose viscosity decrease with the increase of the alkyl chain length and temperature. The presence of the π-conjugated naphthalene moiety imparts 2 a-d photoluminescent properties in bulk solutions. Moreover, the absence of strong π-π stacking among the naphthalene units in solvent-free states enables them to be used as a new generation of photoluminescent inks.

18.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 7): m936, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21836920

RESUMEN

The title compound, [Zn(C(14)H(12)O(6))(C(12)H(8)N(2))](n), is a coordination polymer forming one-dimensional infinite zigzag chains along [10[Formula: see text]] by inter-connection of Zn(II) atoms by 2,5-bis-(all-yl-oxy)-terephthalate anions via the carboxyl-ate groups. The Zn(II) atom is located on a twofold axis and is in a distorted tetra-hedral coordination formed by the two carboxyl-ate O atoms [Zn-O = 1.9647 (12) Å] and two phenanthroline N atoms [Zn-N = 2.0949 (14) Å].

19.
Langmuir ; 25(1): 17-20, 2009 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-19053621

RESUMEN

Surface geometrical microstructure and low surface free energy are the two most important factors for a self-cleaning surface. In this study, multiform geometrical microstructured surfaces were fabricated by casting and electrospinning polyurethanes with and without low surface energy segments. The effect of low surface energy on water repellency was evaluated. Low surface energy seems to make a more significant contribution to the static wetting behavior than do dynamic properties such as the improvement of sliding behavior. Sucking disk behavior was brought forward to explain the pinning state of a water droplet on hydrophobic surfaces with high water contact angles (>150 degrees ). A better understanding of the relationship between the static contact angle and the dynamic sliding property was provided.


Asunto(s)
Flúor/química , Poliuretanos/química , Humectabilidad , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...