Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Surg ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093854

RESUMEN

BACKGROUND: Protecting recurrent laryngeal nerve (RLN) and external branch of the superior laryngeal nerve (EBSLN), a crucial indicator for assessing the quality of thyroid surgery, poses a challenge in endoscopic thyroidectomy. The aim of this study was to investigate the effectiveness and feasibility of nerve real-time monitoring and intermittent monitoring in endoscopic thyroidectomy. METHODS: In this retrospective cohort study, patients underwent endoscopic thyroidectomy were included, and the characteristics and outcomes of real-time monitoring and intermittent monitoring groups were compared. Thereafter, the outcomes of four surgical types (unilateral lobectomy, total thyroidectomy, unilateral lobectomy + lymph node dissection (LND), and total thyroidectomy + LND) were compared in both groups. RESULTS: A total of 1621 patients were enrolled. Compared to intermittent monitoring group, real-time monitoring group significantly shortened operation durations in the four surgical types (30.8 ± 6.1 min vs. 35.7 ± 5.7 min, 54.7 ± 4.4 min vs. 59.1 ± 5.2 min, 39.3 ± 4.6 min vs. 42.0 ± 4.7 min, 59.1 ± 4.9 min vs. 66.0 ± 5.8 min, respectively). As for surgical complications, compared to intermittent monitoring group, real-time monitoring group had lower rates of transient vocal cord paralysis among the four surgical types (0.0% vs. 3.3%, 0.0% vs. 4.0%, 0.8% vs. 3.2%, 2.8% vs. 6.7%, respectively), and lower rates of EBSLN injury (1.1% vs. 4.4%, 0.0% vs. 12.0%, 0.8% vs. 3.8%, 0.9% vs. 4.8%, respectively). Clinicopathologic characteristics and postoperative inflammatory reactions were similarly paralleled in both groups. CONCLUSION: Implementation of real-time monitoring in endoscopic thyroidectomy effectively protects the RLN and EBSLN while shortening operation duration, demonstrating its feasibility and efficacy in enhancing nerve protection and surgical efficiency.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39169797

RESUMEN

Silicone is a common elastomer used in indwelling urinary catheters, and catheters are widely used in various medical applications due to their exceptional biocompatibility, hypoallergenic properties, and flexibility. However, silicones exhibit hydrophobic characteristics, lack inherent biolubrication, and are susceptible to nonspecific biosubstance adsorption, resulting in complications including but not limited to tissue trauma, postoperative pain, and urinary tract infections (UTIs). The development of effective surface designs for biomedical catheters to mitigate invasive damage and UITs has been a longstanding challenge. Herein, we present a novel approach to prepare a mucus mimic hydrogel coating. A thin layer of hydrogel containing xylitol is fabricated via photopolymerization. The surface modification technique and the interface-initiated hydrogel polymerization method ensure robust interfacial coherence. The resultant coating exhibits a low friction coefficient (CoF ≈ 0.1) for urinary catheter applications. Benefiting from the hydration layer and the antifouling of the xylitol unit, the xylitol hydrogel-coated surfaces (pAAAMXA) demonstrate outstanding antibiofouling properties against proteins (98.9% reduction relative to pristine polydimethylsiloxane (PDMS)). Furthermore, the pAAAMXA shows general adhesion resistance against bacteria primarily responsible for UITs (Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Methicillin-resistant strains of Staphylococcus aureus (MRSA), and Staphylococcus epidermidis (S. epidermidis)) without compromising biotoxicity (cell viability 98%). In vivo, catheters coated with the mucus mimic hydrogel displayed excellent biocompatibility, resistance to adhesion of bio substance, and anti-inflammatory characteristics. This work describes a promising alternative to conventional silicone catheters, offering potential for clinical interventional procedures with minimized complications.

3.
BMC Biotechnol ; 24(1): 58, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174975

RESUMEN

Based on our previous findings that salicylic acid and jasmonic acid increased Nostoc flagelliforme polysaccharide yield by regulating intracellular nitric oxide (NO) levels, the mechanism through which NO affects polysaccharide biosynthesis in Nostoc flagelliforme was explored from the perspective of S-nitrosylation (SNO). The addition of NO donor and scavenger showed that intracellular NO had a significant positive effect on the polysaccharide yield of N. flagelliforme. To explore the mechanism, we investigated the relationship between NO levels and the activity of several key enzymes involved in polysaccharide biosynthesis, including fructose 1,6-bisphosphate aldolase (FBA), glucokinase (GK), glucose 6-phosphate dehydrogenase (G6PDH), mitochondrial isocitrate dehydrogenase (ICDH), and UDP-glucose dehydrogenase (UGDH). The enzymatic activities of G6PDH, ICDH, and UGDH were shown to be significantly correlated with the shifts in intracellular NO levels. For further validation, G6PDH, ICDH, and UGDH were heterologously expressed in Escherichia coli and purified via Ni+-NAT affinity chromatography, and subjected to a biotin switch assay and western blot analysis, which revealed that UGDH and G6PDH were susceptible to SNO. Furthermore, mass spectrometry analysis of proteins treated with S-nitrosoglutathione (GSNO) identified the SNO modification sites for UGDH and G6PDH as cysteine 423 and cysteine 249, respectively. These findings suggest that NO modulates polysaccharide biosynthesis in N. flagelliforme through SNO of UGDH and G6PDH. This reveals a potential mechanism through which NO promotes polysaccharide synthesis in N. flagelliforme, while also providing a new strategy for improving the industrial production of polysaccharides.


Asunto(s)
Óxido Nítrico , Nostoc , Nostoc/metabolismo , Nostoc/enzimología , Nostoc/genética , Óxido Nítrico/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Glucosafosfato Deshidrogenasa/genética , Polisacáridos Bacterianos/metabolismo , Polisacáridos Bacterianos/biosíntesis , Polisacáridos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo
4.
Environ Res ; 258: 119420, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38885825

RESUMEN

Novel catalysts with multiple active sites and rapid separation are required to effectively activate peroxymonosulfate (PMS) for the removal of organic pollutants from water. Therefore, an integrated catalyst for PMS activation was developed by directly forming Co-Fe Prussian blue analogs on a three-dimensional porous nickel foam (NF), which were subsequently phosphorylated to obtain cobalt-iron bimetallic phosphide (FeCoP@NF). The FeCoP@NF/PMS system efficiently degraded dye wastewater within 20 min. The system exhibited excellent catalytic degradation over a broad pH range and at high dye concentrations due to the presence of unique asymmetrically charged Coa+ and Pb- dual active sites formed by cobalt phosphides within FeCoP@NF. These active sites significantly enhanced the catalytic activity of PMS. The activation mechanism of PMS involves phosphorylation that accelerates electron transfer from FeCoP@NF to PMS, to generate SO4·-, ·OH, O2·-, and 1O2 active species. Three-dimensional FeCoP@NF could be readily recycled and showed good stability for PMS activation. In this study, a highly efficient, stable, and readily recyclable integrated catalyst was developed. This catalyst system effectively resolves the separation and recovery issues associated with conventional powder catalysts and has a wide range of potential applications in wastewater treatment.


Asunto(s)
Cobalto , Colorantes , Hierro , Níquel , Peróxidos , Contaminantes Químicos del Agua , Cobalto/química , Níquel/química , Hierro/química , Colorantes/química , Peróxidos/química , Contaminantes Químicos del Agua/química , Catálisis , Fosfinas/química
5.
Front Endocrinol (Lausanne) ; 15: 1302510, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694946

RESUMEN

Purpose: This study aimed to introduce a new modified en-bloc resection method and evaluate its feasibility and safety in endoscopic thyroid surgery via bilateral areolar approach (BAA). Methods: Papillary thyroid carcinoma (PTC) patients who underwent lobectomy and ipsilateral central node dissection (CND) via the BAA approach were retrospectively reviewed. Their clinical characteristics and outcomes were evaluated, including operative duration, lymph node yield (LNY), surgical complications, recurrence rate, and metastasis rate, over a ten-year follow-up period. Simultaneous lobectomy and CND were performed in the modified en-bloc group, whereas lobectomy was performed first, followed by CND in the conventional group. Results: The study included 108 patients in the modified en-bloc group and 213 in the conventional group. There were no significant differences in gender, age, tumor locations, tumor dominant nodule size, or the incidence of concomitant Hashimoto thyroiditis when comparing clinicopathologic characteristics. The comparison of operative duration (P = 0.14), blood loss (P = 0.13), postoperative hospital stay (P = 0.58), incidence of transient vocal cord paralysis (P = 0.90) and hypocalcemia (P = 0.60) did not show any differences. The mean LNY achieved in the central compartment of the modified en-bloc group (7.5 ± 4.5) was significantly higher than that in the conventional group (5.6 ± 3.6). Two patients in the modified en-bloc group and two in the conventional group experienced metastasis after surgery during the ten-year follow-up (1.8% vs. 0.9%, P = 0.60). The learning curve analysis showed a significant decrease in operative duration after the 25-35th cases for modified en-bloc resection. Conclusions: The modified en-bloc resection method in endoscopic thyroid surgery via BAA is a technically feasible and safe procedure with excellent cosmetic outcomes for selective PTC patients.


Asunto(s)
Endoscopía , Estudios de Factibilidad , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Tiroidectomía , Humanos , Femenino , Masculino , Tiroidectomía/métodos , Tiroidectomía/efectos adversos , Persona de Mediana Edad , Estudios Retrospectivos , Neoplasias de la Tiroides/cirugía , Neoplasias de la Tiroides/patología , Adulto , Endoscopía/métodos , Endoscopía/efectos adversos , Cáncer Papilar Tiroideo/cirugía , Cáncer Papilar Tiroideo/patología , Estudios de Seguimiento , Anciano , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Resultado del Tratamiento , Glándula Tiroides/cirugía , Glándula Tiroides/patología , Tempo Operativo
6.
Environ Res ; 251(Pt 2): 118644, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38485074

RESUMEN

Tetracycline hydrochloride (TC) accumulates in large quantities in the water environment, causing a serious threat to human health and ecological environment safety. This research focused on developing cost-effective catalysts with high 2e- selectivity for electro-Fenton (EF) technology, a green pollution treatment method. Defective nitrogen-doped porous carbon (d-NPC) was prepared using the metal-organic framework as the precursor to achieve in-situ H2O2 production and self-decomposition into high activity ·OH for degradation of TC combined with Co2+/Co3+. The d-NPC produced 172.1 mg L-1 H2O2 within 120 min, and could degrade 96.4% of TC in EF system. The self-doped defects and graphite-nitrogen in d-NPC improved the oxygen reduction performance and increased the H2O2 yield, while pyridine nitrogen could catalyze H2O2 to generate ·OH. The possible pathway of TC degradation was also proposed. In this study, defective carbon materials were prepared by ball milling, which provided a new strategy for efficient in-situ H2O2 production and the degradation of pollutants.


Asunto(s)
Carbono , Peróxido de Hidrógeno , Nitrógeno , Tetraciclina , Contaminantes Químicos del Agua , Peróxido de Hidrógeno/química , Nitrógeno/química , Carbono/química , Tetraciclina/química , Contaminantes Químicos del Agua/química , Estructuras Metalorgánicas/química , Hierro/química
7.
Front Microbiol ; 14: 1267389, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822738

RESUMEN

Introduction: Temporin-GHa obtained from the frog Hylarana guentheri showed bactericidal efficacy against Streptococcus mutans. To enhance its antibacterial activity, the derived peptides GHaR and GHa11R were designed, and their antibacterial performance, antibiofilm efficacy and potential in the inhibition of dental caries were evaluated. Methods: Bacterial survival assay, fluorescent staining assay and transmission electron microscopy observation were applied to explore how the peptides inhibited and killed S. mutans. The antibiofilm efficacy was assayed by examining exopolysaccharide (EPS) and lactic acid production, bacterial adhesion and cell surface hydrophobicity. The gene expression level of virulence factors of S. mutans was detected by qRT-PCR. Finally, the impact of the peptides on the caries induced ability of S. mutans was measured using a rat caries model. Results: It has been shown that the peptides inhibited biofilm rapid accumulation by weakening the initial adhesion of S. mutans and reducing the production of EPS. Meanwhile, they also decreased bacterial acidogenicity and aciduricity, and ultimately prevented caries development in vivo. Conclusion: GHaR and GHa11R might be promising candidates for controlling S. mutans infections.

8.
Biosci Biotechnol Biochem ; 87(1): 63-73, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36367541

RESUMEN

Antimicrobial peptides (AMPs) show broad-spectrum microbicidal activity against bacteria, fungi, and viruses, and have been considered as one of the most promising candidates to overcome bacterial antimicrobial resistance. Structural modification of AMPs is an effective strategy to develop high-efficiency and low-toxicity antibacterial agents. A series of peptides GHaR6R, GHaR7R, GHaR8R, and GHaR9W with arginine replacement of histidine (His) derived from temporin-GHa of Hylarana guentheri were designed and synthesized. These derived peptides exhibit antibacterial activity against Staphylococcus aureus, and GHaR8R exerts bactericidal effect within 15 min at 4 × MIC (25 µm). The derived peptides caused rapid depolarization of bacteria, and the cell membrane damage was monitored using quartz crystal microbalance with dissipation assay, which suggests that they target cell membranes to exert antibacterial effects. The derived peptides can effectively eradicate mature biofilms of S. aureus. Taken together, the derived peptides are promising antibacterial agent candidates against S. aureus.


Asunto(s)
Antiinfecciosos , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Histidina/farmacología , Arginina/farmacología , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas , Bacterias
9.
Acta Biochim Biophys Sin (Shanghai) ; 54(3): 350-360, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35538042

RESUMEN

Temporin-GHa (GHa) was cloned from , showing a weak antimicrobial activity. In order to improve its bactericidal efficacy, GHaR6R, GHaR7R, GHaR8R and GHaR9W were designed and synthesized. Compared to the parent peptide, the GHa-derived peptides show potent antimicrobial activities against methicillin-resistant (MRSA), which is the main pathogen with high morbidity and mortality that causes various infections in humans. These peptides exert bactericidal actions on MRSA by permeabilizing the cytoplasmic membranes and damaging membrane integrity. All of the four peptides exhibit excellent stability under harsh conditions, including extreme temperature and salts. Furthermore, they inhibit the formation of biofilm and eradicate mature biofilm of MRSA. The GHa-derived peptides decrease bacterial surface hydrophobicity, autoaggregation and polysaccharide intercellular adhesion synthesis in concentration-dependent manner. Real-time quantitative reverse transcription PCR analysis revealed that the peptides downregulate the expression of adhesion genes involved in biofilm formation. Except for GHaR7R, the other three peptides have low hemolytic toxicity against human erythrocytes. In the presence of human erythrocytes, GHaR7R, GHaR8R and GHaR9W interact with MRSA preferentially. GHaR6R, GHaR8R and GHaR9W show less toxicity toward normal cells HL-7702 and hFOB1.19. These results suggest that the GHa-derived peptides may be promising antimicrobial candidates against MRSA infections.


Asunto(s)
Antiinfecciosos , Resistencia a la Meticilina , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Biopelículas , Humanos , Pruebas de Sensibilidad Microbiana
10.
Oncol Lett ; 20(6): 398, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33193858

RESUMEN

Melanoma is the most lethal cutaneous cancer with a high metastatic rate worldwide, causing ~55,500 deaths annually. Although the selective B-Raf oncogene serine/threonine-kinase (BRAF) inhibitors, dabrafenib and vemurafenib, have been approved for the treatment of BRAF-mutant metastatic melanoma, the 5-year survival rate remains unfavorable due to acquired therapy resistance. Therefore, it is of great importance to develop alternative therapeutic drugs and uncover their mechanisms for the treatment of melanoma. 7-dehydrocholesterol (7-DHC) has been demonstrated to inhibit melanoma, but the mechanism is unclear. Therefore, the present study aimed to elucidate the mechanisms of the inhibitory effect of 7-DHC in melanoma cells via analyzing the proliferation, migration, apoptosis, cell cycle and transcriptional sequencing of melanoma cells treated with 7-DHC, as well as constructing a gene signature according to public data of patients with melanoma. In the present study, 7-DHC, the precursor of vitamin D3, was able to induce apoptosis and inhibit cell proliferation and invasion of melanoma cells in a dose-dependent manner. RNA sequencing of melanoma cells treated with different concentrations of 7-DHC revealed that, compared with untreated melanoma cells, 65 genes were downregulated, and genes involved in the regulation of NF-ĸB import into the nucleus and NF-ĸB signaling were significantly repressed. Consistently, the Akt kinase family was one of most common somatic mutation hotspots in patients with melanoma according to The Cancer Genome Atlas enrichment analysis. Furthermore, 7-DHC decreased the phosphorylation of Akt1-Ser473 rather than that of MEK1, and the decreased phosphorylation of Akt1 subsequently inhibited the translocation of free RELA proto-oncogene NF-κB subunit to the nucleus. Finally, by intersecting downregulated genes by 7-DHC treatment and upregulated genes in patients with melanoma, a 7-DHC gene signature was identified, which was negatively associated with the prognosis. Overall, the present results demonstrated that 7-DHC suppressed melanoma cell proliferation and invasion via the Akt1/NF-ĸB signaling pathway, and 7-DHC key target genes were negatively associated with the prognosis. These findings highlight the potential application of 7-DHC for the treatment of melanoma in the future.

11.
JAMA Netw Open ; 2(8): e199826, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31433485

RESUMEN

Importance: Preclinical studies suggest that amylin has a U-shaped dose-response association with risk of Alzheimer disease (AD). The association of plasma amylin with AD in humans is unknown. Objectives: To measure amylin concentration in plasma by using enzyme-linked immunosorbent assay and to study the association between plasma amylin, incidence of AD, and brain structure in humans. Design, Setting, and Participants: This cohort study used data from the Framingham Heart Study offspring cohort from 1998 to 2015. Using a Monte Carlo approach, participants were divided into 3 plasma amylin concentration groups: (1) low (<75 pmol/L), (2) high (75-2800 pmol/L), and (3) extremely high (≥2800 pmol/L). Data analyses were conducted October 5, 2017, to December 18, 2018. Exposures: Baseline plasma amylin concentrations at examination 7. Main Outcomes and Measures: Incidence of dementia or AD and brain volumetric measures from structural magnetic resonance imaging data. Results: From the Framingham Heart Study offspring cohort, 3061 participants (mean [SD] age at baseline, 61.0 [9.5] years; 1653 [54.0%] women) who had plasma amylin measurements, dementia incidence, and brain volume measurements on record were included in this study. The distribution of plasma amylin concentrations was highly skewed (median [interquartile range], 7.5 [4.6-18.9] pmol/L; mean [SD], 302.3 [1941.0] pmol/L; range, 0.03-44 623.7 pmol/L). Compared with the low plasma amylin concentration group, the high plasma amylin concentration group had a lower rate of AD incidence (2.3% vs 5.6%; P = .04), but the extremely high plasma amylin concentration group had a higher rate of AD incidence (14.3%; P < .001). After adjusting for age, sex, education, body mass index, diabetes, cardiovascular disease, high-density lipoprotein level, and APOE4, high plasma amylin was not associated with decreased AD risk (hazard ratio, 0.42 [95% CI, 0.16-1.14]; P = .09) but was positively associated with volume of gray matter in the temporal lobe (ß = 0.17 [SE, 0.05]; P < .001). In contrast, extremely high plasma amylin concentration was associated with a higher AD risk (hazard ratio, 2.51 [95% CI, 1.38-4.57]; P = .003) but not associated with temporal lobe volume (ß = 0.02 [SE, 0.07]; P = .82). Conclusions and Relevance: This study found that plasma amylin concentration was associated with AD incidence and brain structure with a U-shaped pattern. These findings are consistent with preclinical findings that suggest amylin is a neuropeptide that is physiological; however, at extremely high concentrations, it may lead to amylin aggregation and therefore may be a risk factor for AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Apolipoproteína E4/sangre , Encéfalo/patología , Polipéptido Amiloide de los Islotes Pancreáticos/sangre , Lipoproteínas HDL/sangre , Anciano , Enfermedad de Alzheimer/epidemiología , Encéfalo/diagnóstico por imagen , Estudios de Casos y Controles , Comorbilidad , Demencia/epidemiología , Femenino , Humanos , Incidencia , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Factores de Riesgo
12.
Nat Commun ; 9(1): 1935, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789594

RESUMEN

The power of synthetic biology has enabled the expression of heterologous pathways in cells, as well as genome-scale synthesis projects. The complexity of biological networks makes rational de novo design a grand challenge. Introducing features that confer genetic flexibility is a powerful strategy for downstream engineering. Here we develop an in vitro method of DNA library construction based on structural variation to accomplish this goal. The "in vitro SCRaMbLE system" uses Cre recombinase mixed in a test tube with purified DNA encoding multiple loxPsym sites. Using a ß-carotene pathway designed for expression in yeast as an example, we demonstrate top-down and bottom-up in vitro SCRaMbLE, enabling optimization of biosynthetic pathway flux via the rearrangement of relevant transcription units. We show that our system provides a straightforward way to correlate phenotype and genotype and is potentially amenable to biochemical optimization in ways that the in vivo system cannot achieve.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Ingeniería Genética/métodos , Genoma Fúngico , Saccharomyces cerevisiae/genética , Biología Sintética/métodos , beta Caroteno/biosíntesis , Secuencia de Bases , Cromosomas Fúngicos/química , Células Clonales , Biblioteca de Genes , Genes Sintéticos , Genotipo , Integrasas/genética , Integrasas/metabolismo , Redes y Vías Metabólicas/genética , Fenotipo , Plásmidos/química , Plásmidos/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/metabolismo , beta Caroteno/genética
13.
Science ; 355(6329)2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28280152

RESUMEN

Debugging a genome sequence is imperative for successfully building a synthetic genome. As part of the effort to build a designer eukaryotic genome, yeast synthetic chromosome X (synX), designed as 707,459 base pairs, was synthesized chemically. SynX exhibited good fitness under a wide variety of conditions. A highly efficient mapping strategy called pooled PCRTag mapping (PoPM), which can be generalized to any watermarked synthetic chromosome, was developed to identify genetic alterations that affect cell fitness ("bugs"). A series of bugs were corrected that included a large region bearing complex amplifications, a growth defect mapping to a recoded sequence in FIP1, and a loxPsym site affecting promoter function of ATP2 PoPM is a powerful tool for synthetic yeast genome debugging and an efficient strategy for phenotype-genotype mapping.


Asunto(s)
Cromosomas Artificiales de Levadura/química , Cromosomas Artificiales de Levadura/genética , Genoma Fúngico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mapeo Físico de Cromosoma/métodos , Saccharomyces cerevisiae/genética , Secuencia de Bases , Duplicación de Gen , Aptitud Genética , Biología Sintética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA