Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673078

RESUMEN

Periodically poled lithium niobate on insulator (PPLNOI) offers an admirably promising platform for the advancement of nonlinear photonic integrated circuits (PICs). In this context, domain inversion engineering emerges as a key process to achieve efficient nonlinear conversion. However, periodic poling processing of thin-film lithium niobate has only been realized on the chip level, which significantly limits its applications in large-scale nonlinear photonic systems that necessitate the integration of multiple nonlinear components on a single chip with uniform performances. Here, we demonstrate a wafer-scale periodic poling technique on a 4-inch LNOI wafer with high fidelity. The reversal lengths span from 0.5 to 10.17 mm, encompassing an area of ~1 cm2 with periods ranging from 4.38 to 5.51 µm. Efficient poling was achieved with a single manipulation, benefiting from the targeted grouped electrode pads and adaptable comb line widths in our experiment. As a result, domain inversion is ultimately implemented across the entire wafer with a 100% success rate and 98% high-quality rate on average, showcasing high throughput and stability, which is fundamentally scalable and highly cost-effective in contrast to traditional size-restricted chiplet-level poling. Our study holds significant promise to dramatically promote ultra-high performance to a broad spectrum of applications, including optical communications, photonic neural networks, and quantum photonics.

2.
Nano Lett ; 24(4): 1303-1308, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38232135

RESUMEN

A nonlinear holographic technique is capable of processing optical information in the newly generated optical frequencies, enabling fascinating functions in laser display, security storage, and image recognition. One popular nonlinear hologram is based on a periodically poled lithium niobate (LN) crystal. However, due to the limitations of traditional fabrication techniques, the pixel size of the LN hologram is typically several micrometers, resulting in a limited field-of-voew (FOV) of several degrees. Here, we experimentally demonstrate an ultra-high-resolution LN hologram by using the laser poling technique. The minimal pixel size reaches 200 nm, and the FOV is extended above 120° in our experiments. The image distortions at large view angles are effectively suppressed through the Fourier transform. The FOV is further improved by combining multiple diffraction orders of SH fields. The ultimate FOV under our configuration is decided by a Fresnel transmission. Our results pave the way for expanding the applications of nonlinear holography to wide-view imaging and display.

3.
Opt Express ; 31(24): 39832-39840, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38041297

RESUMEN

Controlling thermal emission is essential for various infrared spectroscopy applications. Metasurfaces can be utilized to control multiple degrees of freedom of thermal emission, enabling the compact thermal emission materials and devices. Infrared spectroscopy such as FTIR (Fourier transform infrared spectroscopy), usually requires external infrared radiation source and complex spectroscopic devices for absorption spectrum measurement, which hinders the implementation of integrated compact and portable measurement equipment. Measuring absorption spectrum through the thermal emission of pixelated thermal emitter array can facilitate the integration and miniaturization of measurement setup, which is highly demanded for on-chip spectroscopy applications. Here, we experimentally demonstrate an integrated technology that allows for indirect measurement of the absorption spectrum through the thermal emission of meta-cavity array. This indirect measurement method opens a new avenue for compact infrared spectroscopy analysis.

4.
Nano Lett ; 23(7): 2750-2757, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36951420

RESUMEN

An integrated way to generate and manipulate higher-order Poincaré sphere beams (HOPBs) is a sought-after goal in photonic integrated circuits for high-capacity communication systems. Here, we demonstrate a novel method for on-chip generation and manipulation of HOPBs through combining metasurface with optical waveguides on lithium niobate on insulator platform. With phase modulation by a diatomic geometric metasurface, guided waves are extracted into free space with a high signal-to-noise ratio in the form of two orthogonal circularly polarized optical vortices which are linearly superposed into HOPBs. Meanwhile, a dual-port waveguide crossing is established to reconfigure the output states into an arbitrary point on a higher-order Poincaré sphere based on in-plane interference of two guided waves. Our approach provides a promising solution to generate and manipulate the HOPBs in a compact manner, which would be further enhanced by employing the electro-optical modulation on a lithium niobate waveguide to access a fully tunable scheme.

5.
Phys Rev Lett ; 127(21): 213902, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34860072

RESUMEN

Monolithic optical parametric oscillators extend laser frequencies in compact architectures, but normally guide and circulate all pump, signal, and idler beams. Critical frequency matching is raised among these resonances, limiting operation stability and continuous tuning. Here, we develop a box resonator geometry that guides all beams but only resonates for signal. Such noncritical frequency matching enables 227 GHz continuous tuning, with sub-10 kHz linewidth and 0.43 W power at 3310 nm. Our results confirm that monolithic resonator can be effectively used as a tunable laser including midinfrared wavelength, as further harnessed with methane fine spectral measurement at MHz accuracy.

6.
Phys Rev Lett ; 127(1): 013901, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34270295

RESUMEN

Topological photonics, featured by stable topological edge states resistant to perturbations, has been utilized to design robust integrated devices. Here, we present a study exploring the intriguing topological rotated Weyl physics in a 3D parameter space based on quaternary waveguide arrays on lithium niobate-on-insulator (LNOI) chips. Unlike previous works that focus on the Fermi arc surface states of a single Weyl structure, we can experimentally construct arbitrary interfaces between two Weyl structures whose orientations can be freely rotated in the synthetic parameter space. This intriguing system was difficult to realize in usual 3D Weyl semimetals due to lattice mismatch. We found whether the interface can host gapless topological interface states or not is determined by the relative rotational directions of the two Weyl structures. In the experiment, we have probed the local characteristics of the TISs through linear optical transmission and nonlinear second harmonic generation. Our study introduces a novel path to explore topological photonics on LNOI chips and various applications in integrated nonlinear and quantum optics.

7.
Sci Rep ; 11(1): 12628, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135400

RESUMEN

We report the generation of frequency-uncorrelated photon pairs from counter-propagating spontaneous parametric down-conversion in a periodically-poled KTP waveguide. The joint spectral intensity of photon pairs is characterized by measuring the corresponding stimulated process, namely, the difference frequency generation process. The experimental result shows a clear uncorrelated joint spectrum, where the backward-propagating photon has a narrow bandwidth of 7.46 GHz and the forward-propagating one has a bandwidth of 0.23 THz like the pump light. The heralded single-photon purity estimated through Schmidt decomposition is as high as 0.996, showing a perspective for ultra-purity and narrow-band single-photon generation. Such unique feature results from the backward-wave quasi-phase-matching condition and does not has a strict limitation on the material and working wavelength, thus fascinating its application in photonic quantum technologies.

8.
Opt Lett ; 46(6): 1397-1400, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33720196

RESUMEN

Narrow-linewidth lasers are essential for various applications, but are limited by their size, weight, power, and cost requirements. Here we demonstrate a self-injection locked diode laser fabricated with a high quality factor fiber Fabry-Perot resonator, with a 145 Hz free-running linewidth. The locking scheme is all-fiber for plug-and-play operation. White frequency noise of 50Hz2/Hz is measured with over 42 dB reduction from the low-cost TO-can distributed feedback laser diode, and shows its wide applications in a compact and cost-effective way.

9.
Nano Lett ; 21(4): 1815-1821, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33533621

RESUMEN

Spin light (i.e., circularly polarized light) manipulation based on metasurfaces with a controlled geometric phase (i.e., Pancharatnam-Berry (PB) phase) has achieved great successes according to its convenient design and robust performances, by which the phase control is mainly determined by the rotation angle of each meta-atom. This PB phase can be regarded as a global effect for spin light; here, we propose a local phase manipulation for metasurfaces with planar chiral meta-atoms. Planar chiral meta-atoms break fundamental symmetry restrictions and do not need a rotation for these kinds of meta-atoms to manipulate the spin light, which significantly expands the functionality of metasurface as it is incorporated with other modulations (e.g., PB phase, propagation phase). As an example, spin-decoupled holographic imaging is demonstrated with robust and broadband properties. Our work definitely enriches the design of metasurfaces and may trigger more exciting chiral-optics applications.

10.
Phys Rev Lett ; 126(2): 020503, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33512193

RESUMEN

Entanglement distribution has been accomplished using a flying drone, and this mobile platform can be generalized for multiple mobile nodes with optical relay among them. Here we develop the first optical relay to reshape the wave front of photons for their low diffraction loss in free-space transmission. Using two drones, where one distributes the entangled photons and the other serves as relay node, we achieve entanglement distribution with Clauser-Horne-Shimony-Holt S parameter of 2.59±0.11 at 1 km distance. Key components for entangled source, tracking, and relay are developed with high performance and are lightweight, constructing a scalable airborne system for multinode connectio and toward mobile quantum networks.

11.
Phys Rev Lett ; 125(14): 143902, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33064523

RESUMEN

We demonstrate the first compact photonic flywheel with sub-fs time jitter (averaging times up to 10 µs) at the quantum-noise limit of a monolithic fiber resonator. Such quantum-limited performance is accessed through novel two-step pumping scheme for dissipative Kerr soliton generation. Controllable interaction between stimulated Brillouin lasing and Kerr nonlinearity enhances the DKS coherence and mitigates the thermal instability challenge, achieving a remarkable 22-Hz intrinsic comb linewidth and an unprecedented phase noise of -180 dBc/Hz at 945-MHz carrier at free running. The scheme can be generalized to various device platforms for field-deployable precision metrology.

12.
Sci Rep ; 10(1): 11503, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32661263

RESUMEN

Surface plasmon polaritons (SPPs) are collective excitations of free electrons propagating along a metal-dielectric interface. Although some basic quantum properties of SPPs, such as the preservation of entanglement, the wave-particle duality of a single plasmon, the quantum interference of two plasmons, and the verification of entanglement generation, have been shown, more advanced quantum information protocols have yet to be demonstrated with SPPs. Here, we experimentally realize quantum state teleportation between single photons and SPPs. To achieve this, we use polarization-entangled photon pairs, coherent photon-plasmon-photon conversion on a metallic subwavelength hole array, complete Bell-state measurements and an active feed-forward technique. The results of both quantum state and quantum process tomography confirm the quantum nature of the SPP mediated teleportation. An average state fidelity of [Formula: see text] and a process fidelity of [Formula: see text], which are well above the classical limit, are achieved. Our work shows that SPPs may be useful for realizing complex quantum protocols in a photonic-plasmonic hybrid quantum network.

13.
Natl Sci Rev ; 7(5): 921-928, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-34691535

RESUMEN

Satellites have shown free-space quantum-communication ability; however, they are orbit-limited from full-time all-location coverage. Meanwhile, practical quantum networks require satellite constellations, which are complicated and expensive, whereas the airborne mobile quantum communication may be a practical alternative to offering full-time all-location multi-weather coverage in a cost-effective way. Here, we demonstrate the first mobile entanglement distribution based on drones, realizing multi-weather operation including daytime and rainy nights, with a Clauser-Horne-Shimony-Holt S-parameter measured to be 2.41 ± 0.14 and 2.49 ± 0.06, respectively. Such a system shows unparalleled mobility, flexibility and reconfigurability compared to the existing satellite and fiber-based quantum communication, and reveals its potential to establish a multinode quantum network, with a scalable design using symmetrical lens diameter and single-mode-fiber coupling. All key technologies have been developed to pack quantum nodes into lightweight mobile platforms for local-area coverage, and arouse further technical improvements to establish wide-area quantum networks with high-altitude mobile communication.

14.
Natl Sci Rev ; 7(9): 1476-1484, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34691544

RESUMEN

Though it is still a big challenge to unify general relativity and quantum mechanics in modern physics, the theory of quantum field related with the gravitational effect has been well developed and some striking phenomena are predicted, such as Hawking radiation. However, the direct measurement of these quantum effects under general relativity is far beyond present experiment techniques. Fortunately, the emulation of general relativity phenomena in the laboratory has become accessible in recent years. However, up to now, these simulations are limited either in classical regime or in flat space whereas quantum simulation related with general relativity is rarely involved. Here we propose and experimentally demonstrate a quantum evolution of fermions in close proximity to an artificial black hole on a photonic chip. We successfully observe the acceleration behavior, quantum creation, and evolution of a fermion pair near the event horizon: a single-photon wave packet with positive energy escapes from the black hole while negative energy is captured. Our extensible platform not only provides a route to access quantum effects related with general relativity, but also has the potentiality to investigate quantum gravity in future.

15.
Opt Lett ; 44(22): 5598-5601, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31730116

RESUMEN

We present an experimental realization of a compact and reliable way to build a nondegenerate polarization-entangled photon-pair source based on a dual-periodically-poled $ {\rm Ti}:{{\rm LiNbO}_3} $Ti:LiNbO3 waveguide, which is in the telecommunication window and compatible with the fiber quantum networks. The dual-periodic structure allows two inherently concurrent quasiphase-matching spontaneous parametric down-conversion processes pumped by a single laser beam, hence enabling our source to be compact and stable. We show that our source has a high brightness of $ B = 1.22{\rm } \times {\rm }{10^7}\;{\rm pairs}/(\rm s \times mW \times nm) $B=1.22×107pairs/(s×mW×nm). With quantum state tomography, we estimate an entanglement fidelity of $ 0.945 \pm 0.003 $0.945±0.003. A violation of Clauser-Horne-Shimony-Holt inequality with $ S = 2.75 \pm 0.03 $S=2.75±0.03 is also demonstrated.

16.
Opt Lett ; 44(2): 239-242, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30644870

RESUMEN

Multipartite quantum entanglement is a powerful resource for enriching the functionality of quantum computation and quantum communication. In this Letter, we propose a new method to generate a two-photon multipath Dicke state with concurrent spontaneous parametric downconversion processes from a single periodically poled nonlinear photonic crystal. We design the poling structure to produce a three-path Dicke state where three quasi-phase-matching conditions are fulfilled simultaneously by a hybrid one- and two-dimensionally poled nonlinear photonic crystal. We use genuine multipartite entanglement concurrence to quantify the entanglement of the Dicke state. Using a more complicated poling configuration like multiple-periodically poled two-dimensional nonlinear photonic crystal, we can also produce four-path, five-path, or multipath Dicke states by a single crystal. The multiple-periodically poled two-dimensional nonlinear photonic crystal provides a new method, to the best of our knowledge, for the integrated generation of multipartite quantum light sources.

17.
Opt Express ; 18(21): 22412-7, 2010 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-20941141

RESUMEN

An otherwise dark magnetic dipole resonance in a split-ring resonator can be excited electrically with a Fano-type profile once the symmetric environment for this resonator is broken with respect to the polarized electric-field direction of incident waves. When this asymmetrically induced narrow resonance coincides with a broad dipolar resonance at an identical frequency regime, the metamaterial analogue of electromagnetically-induced transparency (EIT) window can be formed. We demonstrate that this environmental-asymmetry condition can be introduced dielectrically as well as plasmonically, either resonantly or nonresonantly, which indicates the plasmon coupling between different resonant modes is not responsible for the dark mode excitation. Thus, this result should contribute to the physical understanding on dark-mode excitation pathway for EIT-like phenomenon in plasmonic metamaterials.


Asunto(s)
Campos Electromagnéticos , Óptica y Fotónica , Algoritmos , Simulación por Computador , Diseño de Equipo , Magnetismo , Ensayo de Materiales , Refractometría/métodos , Resonancia por Plasmón de Superficie
18.
Opt Express ; 18(17): 18229-34, 2010 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-20721213

RESUMEN

We demonstrate that the trapped magnetic resonance mode can be induced in an asymmetric double-bar structure for electromagnetic waves normally incident onto the double-bar plane, which mode otherwise cannot be excited if the double bars are equal in length. By adjusting the structural geometry, the trapped magnetic resonance becomes transparent with little resonance absorption when it happens in the dipolar resonance regime, a phenomenon so-called plasmonic analogue of electromagnetically induced transparency (EIT). This planar EIT-like metamaterial offers a great geometry simplification by combining the radiant and subradiant resonant modes in a single double-bar resonator.


Asunto(s)
Materiales Manufacturados , Metales/química , Óptica y Fotónica/métodos , Resonancia por Plasmón de Superficie , Modelos Teóricos
19.
Phys Rev Lett ; 104(16): 164301, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20482055

RESUMEN

We demonstrate both theoretically and experimentally the physical mechanism that underlies extraordinary acoustic transmission and collimation of sound through a one-dimensional decorated plate. A microscopic theory considers the total field as the sum of the scattered waves by every periodically aligned groove on the plate, which divides the total field into far-field radiative cylindrical waves and acoustic surface evanescent waves (ASEWs). Different from the well-known acoustic surface waves like Rayleigh waves and Lamb waves, ASEW is closely analogous to a surface plasmon polariton in the optical case. By mapping the total field, the experiments well confirm the theoretical calculations with ASEWs excited. The establishment of the concept of ASEW provides a new route for the integration of subwavelength acoustic devices with a structured solid surface.

20.
Opt Express ; 16(25): 20974-80, 2008 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-19065237

RESUMEN

We demonstrate that left-handed resonance transmission from metallic metamaterial, composed of periodically arranged double rings, can be extended to visible spectrum by introducing an active medium layer as the substrate. The severe ohmic loss inside metals at optical frequencies is compensated by stimulated emission of radiation in this active system. Due to the resonance amplification mechanism of recently proposed lasing spaser, the left-handed transmission band can be restored up to 610 nm wavelength, in dependence on the gain coefficient of the active layer. Additionally, threshold gains for different scaling levels of the double-ring unit are investigated to evaluate the gain requirement of left-handed transmission restoration at different frequency ranges.


Asunto(s)
Diseño Asistido por Computadora , Transferencia de Energía , Modelos Teóricos , Dispositivos Ópticos , Resonancia por Plasmón de Superficie/instrumentación , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...